These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35953473)

  • 1. A dual-specific CRISPR-Cas nanosystem for precision therapeutic editing of liver disorders.
    Xu X; Tang H; Guo J; Xin H; Ping Y
    Signal Transduct Target Ther; 2022 Aug; 7(1):269. PubMed ID: 35953473
    [No Abstract]   [Full Text] [Related]  

  • 2. CRISPR/Cas9 therapeutics for liver diseases.
    Aravalli RN; Steer CJ
    J Cell Biochem; 2018 Jun; 119(6):4265-4278. PubMed ID: 29266637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas-related technologies in basic and translational liver research.
    Song CQ; Xue W
    Nat Rev Gastroenterol Hepatol; 2018 May; 15(5):251-252. PubMed ID: 29443117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.
    Villiger L; Grisch-Chan HM; Lindsay H; Ringnalda F; Pogliano CB; Allegri G; Fingerhut R; Häberle J; Matos J; Robinson MD; Thöny B; Schwank G
    Nat Med; 2018 Oct; 24(10):1519-1525. PubMed ID: 30297904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver targeted gene therapy: Insights into emerging therapies.
    Moscoso CG; Steer CJ
    Drug Discov Today Technol; 2019 Dec; 34():9-19. PubMed ID: 33357766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards therapeutic base editing.
    Seo H; Kim JS
    Nat Med; 2018 Oct; 24(10):1493-1495. PubMed ID: 30297902
    [No Abstract]   [Full Text] [Related]  

  • 7. Therapeutic applications of gene editing in chronic liver diseases: an update.
    Shin JH; Lee J; Jung YK; Kim KS; Jeong J; Choi D
    BMB Rep; 2022 Jun; 55(6):251-258. PubMed ID: 35651324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
    Pandey PK; Quilichini TD; Vaid N; Gao P; Xiang D; Datla R
    Semin Cell Dev Biol; 2019 Dec; 96():107-114. PubMed ID: 31022459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles-Mediated CRISPR/Cas Gene Editing Delivery System.
    Saw PE; Cui GH; Xu X
    ChemMedChem; 2022 May; 17(9):e202100777. PubMed ID: 35261159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in CRISPR technologies for genome editing.
    Song M; Koo T
    Arch Pharm Res; 2021 Jun; 44(6):537-552. PubMed ID: 34164771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. History, evolution and classification of CRISPR-Cas associated systems.
    Agarwal N; Gupta R
    Prog Mol Biol Transl Sci; 2021; 179():11-76. PubMed ID: 33785174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases.
    Rahman S; Datta M; Kim J; Jan AT
    Semin Cell Dev Biol; 2019 Dec; 96():22-31. PubMed ID: 31102655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY
    Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Gene Editing with CRISPR: A Laboratory Medicine Perspective.
    Hahn E; Hiemenz M
    Clin Lab Med; 2020 Jun; 40(2):205-219. PubMed ID: 32439069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR Systems Suitable for Single AAV Vector Delivery.
    Stevanovic M; Piotter E; McClements ME; MacLaren RE
    Curr Gene Ther; 2022; 22(1):1-14. PubMed ID: 34620062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches.
    Tang N; Ning Q; Wang Z; Tao Y; Zhao X; Tang S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112257. PubMed ID: 34894597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing.
    Chen X; Chen Y; Xin H; Wan T; Ping Y
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.