These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35953582)

  • 1. 3D Paper-based milk adulteration detection device.
    Patari S; Datta P; Mahapatra PS
    Sci Rep; 2022 Aug; 12(1):13657. PubMed ID: 35953582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for Adulterants in Liquid Milk Using a Portable Raman Miniature Spectrometer with Immersion Probe.
    Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE
    Appl Spectrosc; 2017 Feb; 71(2):308-312. PubMed ID: 27329831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well.
    Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE
    J Dairy Sci; 2016 Oct; 99(10):7821-7831. PubMed ID: 27474982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?
    Yang Y; Hettinga KA; Erasmus SW; Pustjens AM; van Ruth SM
    Food Res Int; 2020 Oct; 136():109543. PubMed ID: 32846598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue.
    Ghohestani E; Tashkhourian J; Hemmateenejad B
    Food Chem; 2024 Oct; 456():139973. PubMed ID: 38852440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances on determination of milk adulterants.
    Nascimento CF; Santos PM; Pereira-Filho ER; Rocha FRP
    Food Chem; 2017 Apr; 221():1232-1244. PubMed ID: 27979084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices.
    Guinati BGS; Sousa LR; Oliveira KA; Coltro WKT
    Anal Methods; 2021 Nov; 13(44):5383-5390. PubMed ID: 34734929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple smartphone-assisted paper-based colorimetric biosensor for the detection of urea adulteration in milk based on an environment-friendly pH-sensitive nanocomposite.
    Shalileh F; Sabahi H; Golbashy M; Dadmehr M; Hosseini M
    Anal Chim Acta; 2023 Dec; 1284():341935. PubMed ID: 37996167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification of adulterants in adulterated milks by near infrared spectroscopy combined with non-linear pattern recognition methods].
    Ni LJ; Zhong L; Zhang X; Zhang LG; Huang SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2673-8. PubMed ID: 25739206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive approach for milk adulteration detection using inherent bio-physical properties as 'Universal Markers': Towards a miniaturized adulteration detection platform.
    Tripathy S; Ghole AR; Deep K; Vanjari SRK; Singh SG
    Food Chem; 2017 Feb; 217():756-765. PubMed ID: 27664695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies.
    Gondim CS; Junqueira RG; Souza SVC; Ruisánchez I; Callao MP
    Food Chem; 2017 Sep; 230():68-75. PubMed ID: 28407966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative Assessment for Milk Adulteration: Extent, Common Adulterants, and Utility of Rapid Tests.
    Garg L; Mulla S
    Indian J Community Med; 2024; 49(5):747-751. PubMed ID: 39421517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor.
    Kumar P; Lambadi PR; Navani NK
    Biosens Bioelectron; 2015 Oct; 72():340-7. PubMed ID: 26002019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry.
    Abernethy G; Higgs K
    J Chromatogr A; 2013 May; 1288():10-20. PubMed ID: 23540766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost instrumentation system to analyze different types of milk adulteration.
    Das S; Sivaramakrishna M; Biswas K; Goswami B
    ISA Trans; 2015 May; 56():268-75. PubMed ID: 25532935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nontargeted detection and recognition of adulterants in milk powder using Raman imaging and neural networks.
    Xia Q; Huang Z; Zhang P; Bu H; Bao L; Chen D
    Analyst; 2023 Jan; 148(2):412-421. PubMed ID: 36541331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective detection and quantification of chemical adulterants in model fat-filled milk powders using NIRS and hierarchical modelling strategies.
    Kene Ejeahalaka K; On SLW
    Food Chem; 2020 Mar; 309():125785. PubMed ID: 31732247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique.
    Qin J; Kim MS; Chao K; Dhakal S; Lee H; Cho BK; Mo C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):152-161. PubMed ID: 27879171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Adulterants and Contaminants in Liquid Foods-A Review.
    Jha SN; Jaiswal P; Grewal MK; Gupta M; Bhardwaj R
    Crit Rev Food Sci Nutr; 2016 Jul; 56(10):1662-84. PubMed ID: 25975571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-Based Detection of Adulterants in Milk Using Convolutional Neural Network.
    Mamgain A; Kumar V; Dash S
    ACS Omega; 2024 Jun; 9(25):27158-27168. PubMed ID: 38947804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.