These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35953969)
41. SOLO: A Simple Framework for Instance Segmentation. Wang X; Zhang R; Shen C; Kong T; Li L IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):8587-8601. PubMed ID: 34516372 [TBL] [Abstract][Full Text] [Related]
42. Instance segmentation using semi-supervised learning for fire recognition. Sun G; Wen Y; Li Y Heliyon; 2022 Dec; 8(12):e12375. PubMed ID: 36590555 [TBL] [Abstract][Full Text] [Related]
43. Automatic creation of annotations for chest radiographs based on the positional information extracted from radiographic image reports. Wang B; Takeda T; Sugimoto K; Zhang J; Wada S; Konishi S; Manabe S; Okada K; Matsumura Y Comput Methods Programs Biomed; 2021 Sep; 209():106331. PubMed ID: 34418813 [TBL] [Abstract][Full Text] [Related]
44. Object Affinity Learning: Towards Annotation-Free Instance Segmentation. Wang Y; Chen Y; Zhang Z IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):13959-13973. PubMed ID: 37486849 [TBL] [Abstract][Full Text] [Related]
45. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
46. ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection. Xin Z; Wu T; Chen S; Zou Y; Shao L; You X IEEE Trans Image Process; 2024; 33():5564-5576. PubMed ID: 38875088 [TBL] [Abstract][Full Text] [Related]
47. TKR-FSOD: Fetal Anatomical Structure Few-Shot Detection Utilizing Topological Knowledge Reasoning. Li X; Tan Y; Liang B; Pu B; Yang J; Zhao L; Kong Y; Yang L; Zhang R; Li H; Li S IEEE J Biomed Health Inform; 2024 Oct; PP():. PubMed ID: 39401118 [TBL] [Abstract][Full Text] [Related]
48. Traffic Light Recognition Based on Binary Semantic Segmentation Network. Kim HK; Yoo KY; Park JH; Jung HY Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974735 [TBL] [Abstract][Full Text] [Related]
49. Semantic Segmentation Using Pixel-Wise Adaptive Label Smoothing via Self-Knowledge Distillation for Limited Labeling Data. Park S; Kim J; Heo YS Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408237 [TBL] [Abstract][Full Text] [Related]
50. Enabling a Single Deep Learning Model for Accurate Gland Instance Segmentation: A Shape-Aware Adversarial Learning Framework. Yan Z; Yang X; Cheng KT IEEE Trans Med Imaging; 2020 Jun; 39(6):2176-2189. PubMed ID: 31944936 [TBL] [Abstract][Full Text] [Related]
51. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry. Hasan MK; Calvet L; Rabbani N; Bartoli A Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053 [TBL] [Abstract][Full Text] [Related]
52. Iterative Label Denoising Network: Segmenting Male Pelvic Organs in CT From 3D Bounding Box Annotations. Wang S; Wang Q; Shao Y; Qu L; Lian C; Lian J; Shen D IEEE Trans Biomed Eng; 2020 Oct; 67(10):2710-2720. PubMed ID: 31995472 [TBL] [Abstract][Full Text] [Related]
53. Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks. Chen S; Urban G; Baldi P J Imaging; 2022 Apr; 8(5):. PubMed ID: 35621885 [TBL] [Abstract][Full Text] [Related]
54. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
55. Gland Instance Segmentation Using Deep Multichannel Neural Networks. Xu Y; Li Y; Wang Y; Liu M; Fan Y; Lai M; Chang EI IEEE Trans Biomed Eng; 2017 Dec; 64(12):2901-2912. PubMed ID: 28358671 [TBL] [Abstract][Full Text] [Related]
56. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related]
57. Animal Detection and Classification from Camera Trap Images Using Different Mainstream Object Detection Architectures. Tan M; Chao W; Cheng JK; Zhou M; Ma Y; Jiang X; Ge J; Yu L; Feng L Animals (Basel); 2022 Aug; 12(15):. PubMed ID: 35953964 [TBL] [Abstract][Full Text] [Related]
58. 'Squeeze & excite' guided few-shot segmentation of volumetric images. Guha Roy A; Siddiqui S; Pölsterl S; Navab N; Wachinger C Med Image Anal; 2020 Jan; 59():101587. PubMed ID: 31630012 [TBL] [Abstract][Full Text] [Related]
59. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596 [TBL] [Abstract][Full Text] [Related]
60. Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room. Srivastav V; Gangi A; Padoy N Med Image Anal; 2022 Aug; 80():102525. PubMed ID: 35809529 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]