BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 35954176)

  • 21. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer.
    Sargazi S; Siddiqui B; Qindeel M; Rahdar A; Bilal M; Behzadmehr R; Mirinejad S; Pandey S
    Carbohydr Polym; 2022 Aug; 290():119489. PubMed ID: 35550773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments.
    To KKW; Fong W; Tong CWS; Wu M; Yan W; Cho WCS
    Expert Opin Drug Discov; 2020 Jan; 15(1):63-83. PubMed ID: 31739699
    [No Abstract]   [Full Text] [Related]  

  • 23. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.
    Mehta M; Satija S; Paudel KR; Malyla V; Kannaujiya VK; Chellappan DK; Bebawy M; Hansbro PM; Wich PR; Dua K
    Nanomedicine; 2021 Jan; 31():102303. PubMed ID: 32980549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNA-targeted therapeutics for lung cancer treatment.
    Xue J; Yang J; Luo M; Cho WC; Liu X
    Expert Opin Drug Discov; 2017 Feb; 12(2):141-157. PubMed ID: 27866431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth.
    Zhang Q; Ding F; Liu X; Shen J; Su Y; Qian J; Zhu X; Zhang C
    J Control Release; 2020 Dec; 328():425-434. PubMed ID: 32889054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAi-based therapeutics and tumor targeted delivery in cancer.
    Kara G; Calin GA; Ozpolat B
    Adv Drug Deliv Rev; 2022 Mar; 182():114113. PubMed ID: 35063535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNA therapeutics: the emerging anticancer strategies.
    Jain CK; Gupta A; Dogra N; Kumar VS; Wadhwa G; Sharma SK
    Recent Pat Anticancer Drug Discov; 2014; 9(3):286-96. PubMed ID: 24605908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents.
    Baumann V; Winkler J
    Future Med Chem; 2014; 6(17):1967-84. PubMed ID: 25495987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA replacement therapy in cancer.
    Mollaei H; Safaralizadeh R; Rostami Z
    J Cell Physiol; 2019 Aug; 234(8):12369-12384. PubMed ID: 30605237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics.
    Fan R; Xiao C; Wan X; Cha W; Miao Y; Zhou Y; Qin C; Cui T; Su F; Shan X
    RNA Biol; 2019 Jun; 16(6):707-718. PubMed ID: 30900502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles.
    Yan B; Wang H; Tan Y; Fu W
    Curr Top Med Chem; 2019; 19(21):1918-1947. PubMed ID: 31393249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives.
    Bravo-Vázquez LA; Méndez-García A; Rodríguez AL; Sahare P; Pathak S; Banerjee A; Duttaroy AK; Paul S
    Front Bioeng Biotechnol; 2023; 11():1208547. PubMed ID: 37576994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA.
    Lu TX; Rothenberg ME
    J Allergy Clin Immunol; 2018 Apr; 141(4):1202-1207. PubMed ID: 29074454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arginine-rich, cell penetrating peptide-anti-microRNA complexes decrease glioblastoma migration potential.
    Zhang Y; Köllmer M; Buhrman JS; Tang MY; Gemeinhart RA
    Peptides; 2014 Aug; 58():83-90. PubMed ID: 24969623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma.
    Yang C; Wang R; Hardy P
    Cancers (Basel); 2021 Oct; 13(20):. PubMed ID: 34680340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics.
    Li L; He W; You W; Yan J; Liu W
    J Nanobiotechnology; 2022 Jan; 20(1):10. PubMed ID: 34983557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer.
    Curtin CM; Castaño IM; O'Brien FJ
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29068566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. microRNAs and their therapeutic strategy in phase I and phase II clinical trials.
    Kp A; Kaliaperumal K; Sekar D
    Epigenomics; 2024 Feb; 16(4):259-271. PubMed ID: 38312027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.
    Tay FC; Lim JK; Zhu H; Hin LC; Wang S
    Adv Drug Deliv Rev; 2015 Jan; 81():117-27. PubMed ID: 24859534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miRNA and cancer; computational and experimental approaches.
    Tutar Y
    Curr Pharm Biotechnol; 2014; 15(5):429. PubMed ID: 25189575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.