These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35954184)
21. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. Schott J; Fuchs B; Böttcher C; Hilker M Planta; 2021 Dec; 255(1):16. PubMed ID: 34878607 [TBL] [Abstract][Full Text] [Related]
23. Oviposition by Geuss D; Lortzing T; Schwachtje J; Kopka J; Steppuhn A Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545097 [TBL] [Abstract][Full Text] [Related]
24. Spatial distribution of the cereal leaf beetle (Coleoptera: Chrysomelidae) in wheat. Reay-Jones FP Environ Entomol; 2010 Dec; 39(6):1943-52. PubMed ID: 22182561 [TBL] [Abstract][Full Text] [Related]
25. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Mason CJ; Couture JJ; Raffa KF Oecologia; 2014 Jul; 175(3):901-10. PubMed ID: 24798201 [TBL] [Abstract][Full Text] [Related]
26. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Altmann S; Muino JM; Lortzing V; Brandt R; Himmelbach A; Altschmied L; Hilker M Mol Ecol; 2018 Dec; 27(23):4901-4915. PubMed ID: 30329187 [TBL] [Abstract][Full Text] [Related]
27. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. Lawrence SD; Novak NG; Ju CJ; Cooke JE J Chem Ecol; 2008 Aug; 34(8):1013-25. PubMed ID: 18581175 [TBL] [Abstract][Full Text] [Related]
28. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. Eisenring M; Glauser G; Meissle M; Romeis J J Chem Ecol; 2018 Dec; 44(12):1178-1189. PubMed ID: 30267359 [TBL] [Abstract][Full Text] [Related]
29. Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. Zhang Y; Fu Y; Fan J; Li Q; Francis F; Chen J BMC Plant Biol; 2019 Dec; 19(1):547. PubMed ID: 31823722 [TBL] [Abstract][Full Text] [Related]
30. Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L. Delaney KJ; Wawrzyniak M; Lemańczyk G; Wrzesińska D; Piesik D J Chem Ecol; 2013 May; 39(5):620-9. PubMed ID: 23588742 [TBL] [Abstract][Full Text] [Related]
31. Feeding and damage-induced volatile cues make beetles disperse and produce a more even distribution of damage for sagebrush. Karban R; Yang LH J Anim Ecol; 2020 Sep; 89(9):2056-2062. PubMed ID: 32472554 [TBL] [Abstract][Full Text] [Related]
32. Geostatistical Characterization of Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Distributions in Wheat. Reay-Jones FPF Environ Entomol; 2017 Aug; 46(4):931-938. PubMed ID: 28881956 [TBL] [Abstract][Full Text] [Related]
33. Modulation of nonessential amino acid biosynthetic pathways in virulent Hessian fly larvae (Mayetiola destructor), feeding on susceptible host wheat (Triticum aestivum). Subramanyam S; Shreve JT; Nemacheck JA; Johnson AJ; Schemerhorn B; Shukle RH; Williams CE J Insect Physiol; 2018; 105():54-63. PubMed ID: 29336997 [TBL] [Abstract][Full Text] [Related]
34. An elm EST database for identifying leaf beetle egg-induced defense genes. Büchel K; McDowell E; Nelson W; Descour A; Gershenzon J; Hilker M; Soderlund C; Gang DR; Fenning T; Meiners T BMC Genomics; 2012 Jun; 13():242. PubMed ID: 22702658 [TBL] [Abstract][Full Text] [Related]
35. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. Badri DV; Zolla G; Bakker MG; Manter DK; Vivanco JM New Phytol; 2013 Apr; 198(1):264-273. PubMed ID: 23347044 [TBL] [Abstract][Full Text] [Related]
36. Species-specific plant-mediated effects between herbivores converge at high damage intensity. Wan J; Yi J; Tao Z; Ren Z; Otieno EO; Tian B; Ding J; Siemann E; Erb M; Huang W Ecology; 2022 May; 103(5):e3647. PubMed ID: 35072958 [TBL] [Abstract][Full Text] [Related]
37. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore. Milano NJ; Barber NA; Adler LS Environ Entomol; 2015 Apr; 44(2):317-24. PubMed ID: 26313185 [TBL] [Abstract][Full Text] [Related]
38. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. Castano-Duque L; Helms A; Ali JG; Luthe DS J Chem Ecol; 2018 Aug; 44(7-8):727-745. PubMed ID: 29926336 [TBL] [Abstract][Full Text] [Related]
39. Comparative transcriptome analysis of soybean response to bean pyralid larvae. Zeng W; Sun Z; Cai Z; Chen H; Lai Z; Yang S; Tang X BMC Genomics; 2017 Nov; 18(1):871. PubMed ID: 29132375 [TBL] [Abstract][Full Text] [Related]
40. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. Piesik D; Lemńczyk G; Skoczek A; Lamparski R; Bocianowski J; Kotwica K; Delaney KJ J Plant Physiol; 2011 Sep; 168(13):1534-42. PubMed ID: 21492953 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]