These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35954192)

  • 1. Neuroinflammatory Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to Improve the Recording Performance of Intracortical Microelectrodes.
    Song S; Regan B; Ereifej ES; Chan ER; Capadona JR
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes.
    Bedell HW; Schaub NJ; Capadona JR; Ereifej ES
    Acta Biomater; 2020 Jan; 102():205-219. PubMed ID: 31733330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes.
    Song SS; Druschel LN; Conard JH; Wang JJ; Kasthuri NM; Ricky Chan E; Capadona JR
    Brain Behav Immun; 2024 May; 118():221-235. PubMed ID: 38458498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
    Bedell HW; Hermann JK; Ravikumar M; Lin S; Rein A; Li X; Molinich E; Smith PD; Selkirk SM; Miller RH; Sidik S; Taylor DM; Capadona JR
    Biomaterials; 2018 May; 163():163-173. PubMed ID: 29471127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes.
    Bedell HW; Song S; Li X; Molinich E; Lin S; Stiller A; Danda V; Ecker M; Shoffstall AJ; Voit WE; Pancrazio JJ; Capadona JR
    Front Neurosci; 2018; 12():772. PubMed ID: 30429766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance.
    Hermann JK; Ravikumar M; Shoffstall AJ; Ereifej ES; Kovach KM; Chang J; Soffer A; Wong C; Srivastava V; Smith P; Protasiewicz G; Jiang J; Selkirk SM; Miller RH; Sidik S; Ziats NP; Taylor DM; Capadona JR
    J Neural Eng; 2018 Apr; 15(2):025002. PubMed ID: 29219114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes.
    Lam DV; Javadekar A; Patil N; Yu M; Li L; Menendez DM; Gupta AS; Capadona JR; Shoffstall AJ
    Acta Biomater; 2023 Aug; 166():278-290. PubMed ID: 37211307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Toll-Like Receptor 2 and 4 Innate Immunity Pathways in Intracortical Microelectrode-Induced Neuroinflammation.
    Hermann JK; Lin S; Soffer A; Wong C; Srivastava V; Chang J; Sunil S; Sudhakar S; Tomaszewski WH; Protasiewicz G; Selkirk SM; Miller RH; Capadona JR
    Front Bioeng Biotechnol; 2018; 6():113. PubMed ID: 30159311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria Invade the Brain Following Sterile Intracortical Microelectrode Implantation.
    Capadona J; Hoeferlin G; Grabinski S; Druschel L; Duncan J; Burkhart G; Weagraff G; Lee A; Hong C; Bambroo M; Olivares H; Bajwa T; Memberg W; Sweet J; Hamedani HA; Acharya A; Hernandez-Reynoso A; Donskey C; Jaskiw G; Chan R; Ajiboye A; von Recum H; Zhang L
    Res Sq; 2024 Mar; ():. PubMed ID: 38496527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes.
    Ravikumar M; Sunil S; Black J; Barkauskas DS; Haung AY; Miller RH; Selkirk SM; Capadona JR
    Biomaterials; 2014 Sep; 35(28):8049-64. PubMed ID: 24973296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes.
    Potter KA; Buck AC; Self WK; Callanan ME; Sunil S; Capadona JR
    Biomaterials; 2013 Sep; 34(29):7001-15. PubMed ID: 23791503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes.
    Hermann JK; Capadona JR
    Crit Rev Biomed Eng; 2018; 46(4):341-367. PubMed ID: 30806249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive proteomic analysis of the differential expression of 62 proteins following intracortical microelectrode implantation.
    Song SS; Druschel LN; Kasthuri NM; Wang JJ; Conard JH; Chan ER; Acharya AP; Capadona JR
    Sci Rep; 2024 Jul; 14(1):17596. PubMed ID: 39080300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health.
    Chen K; Cambi F; Kozai TDY
    Biomaterials; 2023 Oct; 301():122210. PubMed ID: 37413842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies.
    Duncan JL; Wang JJ; Glusauskas G; Weagraff GR; Gao Y; Hoeferlin GF; Hunter AH; Hess-Dunning A; Ereifej ES; Capadona JR
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays.
    Hernandez-Reynoso AG; Sturgill BS; Hoeferlin GF; Druschel LN; Krebs OK; Menendez DM; Thai TTD; Smith TJ; Duncan J; Zhang J; Mittal G; Radhakrishna R; Desai MS; Cogan SF; Pancrazio JJ; Capadona JR
    Biomaterials; 2023 Dec; 303():122351. PubMed ID: 37931456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of Neural Probes in the Brain Elicits Oxidative Stress.
    Ereifej ES; Rial GM; Hermann JK; Smith CS; Meade SM; Rayyan JM; Chen K; Feng H; Capadona JR
    Front Bioeng Biotechnol; 2018; 6():9. PubMed ID: 29487848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.