These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 35954770)
1. Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China. Wang Z; Ma C; Qiu Y; Xiong H; Li M Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35954770 [TBL] [Abstract][Full Text] [Related]
2. GIS-based landslide susceptibility zoning using a coupled model: a case study in Badong County, China. Wang P; Deng H; Liu Y Environ Sci Pollut Res Int; 2024 Jan; 31(4):6213-6231. PubMed ID: 38146028 [TBL] [Abstract][Full Text] [Related]
3. Development of landslide susceptibility maps of Tripura, India using GIS and analytical hierarchy process (AHP). Nath NK; Gautam VK; Pande CB; Mishra LR; Raju JT; Moharir KN; Rane NL Environ Sci Pollut Res Int; 2024 Jan; 31(5):7481-7497. PubMed ID: 38159190 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of landslides susceptibility in Southeastern Tibet considering seismic sensitivity. Yeqi Z; Yonggang G; Guowen W; Shengjie W Heliyon; 2024 Sep; 10(18):e36800. PubMed ID: 39309935 [TBL] [Abstract][Full Text] [Related]
7. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility. Aksoy H Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954 [TBL] [Abstract][Full Text] [Related]
8. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran. Eitvandi N; Sarikhani R; Derikvand S Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313 [TBL] [Abstract][Full Text] [Related]
9. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Das S; Sarkar S; Kanungo DP Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227 [TBL] [Abstract][Full Text] [Related]
10. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison. Huang Z; Peng L; Li S; Liu Y; Zhou S Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134 [TBL] [Abstract][Full Text] [Related]
11. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related]
12. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Ozioko OH; Igwe O Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278 [TBL] [Abstract][Full Text] [Related]
13. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936 [TBL] [Abstract][Full Text] [Related]
14. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
15. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
16. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
17. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
18. A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines. Wen H; Liu L; Zhang J; Hu J; Huang X J Environ Manage; 2023 Sep; 342():118177. PubMed ID: 37210819 [TBL] [Abstract][Full Text] [Related]
19. Ensemble of fuzzy-analytical hierarchy process in landslide susceptibility modeling from a humid tropical region of Western Ghats, Southern India. Gopinath G; Jesiya N; Achu AL; Bhadran A; Surendran UP Environ Sci Pollut Res Int; 2024 Jun; 31(29):41370-41387. PubMed ID: 37156952 [TBL] [Abstract][Full Text] [Related]