These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35955214)
1. Qualitative Differences and Emission Persistence of Volatile Organic Compounds from Bio-Based Particleboards. Tupciauskas R; Meile K; Godina D; Rizhikovs J; Syrpas M; Venskutonis PR Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955214 [TBL] [Abstract][Full Text] [Related]
2. Influence of Manufacturing Conditions on Binder-Less Boards from Steam-Exploded Hemp Shives and Wheat Straw. Tupciauskas R; Rizhikovs J; Andzs M; Bikovens O Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591475 [TBL] [Abstract][Full Text] [Related]
3. VOC Emissions from Spruce Strands and Hemp Shive: In Search for a Low Emission Raw Material for Bio-Based Construction Materials. Adamová T; Hradecký J; Prajer M Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238573 [TBL] [Abstract][Full Text] [Related]
4. Chemical-sensory characterization of dairy manure odor using headspace solid-phase microextraction and multidimensional gas chromatography mass spectrometry-olfactometry. Laor Y; Koziel JA; Cai L; Ravid U J Air Waste Manag Assoc; 2008 Sep; 58(9):1187-97. PubMed ID: 18817111 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of odorous volatile organic compounds emitted from wood-based panels. Liu Y; Zhu X; Qin X; Wang W; Hu Y; Yuan D Environ Monit Assess; 2020 May; 192(6):348. PubMed ID: 32388623 [TBL] [Abstract][Full Text] [Related]
6. Hemp Shives as a Raw Material for the Production of Particleboards. Auriga R; Pędzik M; Mrozowski R; Rogoziński T Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501702 [TBL] [Abstract][Full Text] [Related]
7. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample pH, Sulphuric Acid Concentration and Phase Ratio. Aggarwal P; Baker J; Boyd MT; Coyle S; Probert C; Chapman EA Metabolites; 2020 Nov; 10(12):. PubMed ID: 33255680 [TBL] [Abstract][Full Text] [Related]
8. Formaldehyde and VOC emissions from plywood panels bonded with bio-oil phenolic resins. Jia L; Chu J; Li J; Ren J; Huang P; Li D Environ Pollut; 2020 Sep; 264():114819. PubMed ID: 32559879 [TBL] [Abstract][Full Text] [Related]
9. Development of a Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots. Stierlin É; Nicolè F; Fernandez X; Michel T Chem Biodivers; 2019 Aug; 16(8):e1900280. PubMed ID: 31211502 [TBL] [Abstract][Full Text] [Related]
10. Discrimination and Characterization of the Volatile Organic Compounds in Li C; Wan H; Wu X; Yin J; Zhu L; Chen H; Song X; Han L; Yang W; Yu H; Li Z Molecules; 2022 Jul; 27(14):. PubMed ID: 35889268 [TBL] [Abstract][Full Text] [Related]
11. Characterization of volatile organic compounds and odors by in-vivo sampling of beef cattle rumen gas, by solid-phase microextraction, and gas chromatography-mass spectrometry-olfactometry. Cai L; Koziel JA; Davis J; Lo YC; Xin H Anal Bioanal Chem; 2006 Nov; 386(6):1791-802. PubMed ID: 17009001 [TBL] [Abstract][Full Text] [Related]
12. [Recent advances in the application of headspace gas chromatography-mass spectrometry]. Zhang X; Liu W; Lu Y; Lü Y Se Pu; 2018 Oct; 36(10):962-971. PubMed ID: 30378354 [TBL] [Abstract][Full Text] [Related]
13. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Capozzi V; Lonzarich V; Khomenko I; Cappellin L; Navarini L; Biasioli F Molecules; 2020 Mar; 25(5):. PubMed ID: 32164157 [TBL] [Abstract][Full Text] [Related]
14. First results on headspace-solid phase microextraction-gas chromatography/mass spectrometry of volatile organic compounds emitted by wax objects in museums. Lattuati-Derieux A; Thao S; Langlois J; Regert M J Chromatogr A; 2008 Apr; 1187(1-2):239-49. PubMed ID: 18313062 [TBL] [Abstract][Full Text] [Related]
15. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry. Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221 [TBL] [Abstract][Full Text] [Related]
16. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS as a process analytical technology (PAT) tool for monitoring the cultivation of C. tetani. Ghader M; Shokoufi N; Es-Haghi A; Kargosha K J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():222-232. PubMed ID: 29550684 [TBL] [Abstract][Full Text] [Related]
17. Acquisition of Volatile Compounds by Gas Chromatography-Mass Spectrometry (GC-MS). Vallarino JG; Erban A; Fehrle I; Fernie AR; Kopka J; Osorio S Methods Mol Biol; 2018; 1778():225-239. PubMed ID: 29761442 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study. Mendes B; Gonçalves J; Câmara JS Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473 [TBL] [Abstract][Full Text] [Related]
19. Extraction and Identification of Volatile Organic Compounds Emitted by Fragrant Flowers of Three Lo MM; Benfodda Z; Bénimélis D; Fontaine JX; Molinié R; Meffre P Metabolites; 2021 Sep; 11(9):. PubMed ID: 34564410 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. Lattuati-Derieux A; Thao-Heu S; Lavédrine B J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]