BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35955237)

  • 1. Optimized XGBoost Model with Small Dataset for Predicting Relative Density of Ti-6Al-4V Parts Manufactured by Selective Laser Melting.
    Zou M; Jiang WG; Qin QH; Liu YC; Li ML
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters.
    Phutela C; Aboulkhair NT; Tuck CJ; Ashcroft I
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications.
    Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW
    J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slurry Erosion-Corrosion Characteristics of As-Built Ti-6Al-4V Manufactured by Selective Laser Melting.
    Aldahash SA; Abdelaal O; Abdelrhman Y
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32911629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
    Yan C; Hao L; Hussein A; Young P
    J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps.
    Xie W; Zheng M; Wang J; Li X
    J Prosthet Dent; 2020 Jan; 123(1):163-172. PubMed ID: 30982620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.
    Zhao B; Wang H; Qiao N; Wang C; Hu M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):832-841. PubMed ID: 27770961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting and Spreading of AgCuTi on Selective Laser-Melted Ti-6Al-4V.
    Hao L; Liu J; Li Y
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment.
    Wang D; Wang H; Chen X; Liu Y; Lu D; Liu X; Han C
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.
    Ye X; Leeflang S; Wu C; Chang J; Zhou J; Huan Z
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
    Kabir MR; Richter H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Electrochemical Behavior of a 3D-Printed Ti-6Al-4V Alloy.
    Yu Z; Chen Z; Qu D; Qu S; Wang H; Zhao F; Zhang C; Feng A; Chen D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of surface characteristics and cytocompatibility of Ti-6Al-4V alloy fabricated with select laser melting and electron beam melting].
    Zhao BJ; Wang H; Yan RZ; Wang C; Li RX; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Dec; 51(12):753-757. PubMed ID: 27978917
    [No Abstract]   [Full Text] [Related]  

  • 14. Trueness of removable partial denture frameworks additively manufactured with selective laser melting.
    Peng PW; Hsu CY; Huang HY; Chao JC; Lee WF
    J Prosthet Dent; 2022 Jan; 127(1):122-127. PubMed ID: 33223197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semantic segmentation of defects based on DCNN and its application on fatigue lifetime prediction for SLM Ti-6Al-4V alloy.
    Pan J; Hu D; Zhou L; Huang D; Wang Y; Wang R
    Philos Trans A Math Phys Eng Sci; 2024 Jan; 382(2264):20220396. PubMed ID: 37980937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.
    Ter Haar GM; Becker TH
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm.
    Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach.
    Tarwidi D; Pudjaprasetya SR; Adytia D; Apri M
    MethodsX; 2023; 10():102119. PubMed ID: 37007622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process.
    Fousová M; Vojtěch D; Kubásek J; Jablonská E; Fojt J
    J Mech Behav Biomed Mater; 2017 May; 69():368-376. PubMed ID: 28167428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite Element Analysis and Computational Fluid Dynamics Verification of Molten Pool Characteristics During Selective Laser Melting of Ti-6Al-4V Plates.
    Du L; Jiang WG; Xu GG; Qin QH; Li DS
    3D Print Addit Manuf; 2023 Aug; 10(4):711-722. PubMed ID: 37609587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.