These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35955273)

  • 61. Silicon nanowires for photovoltaic solar energy conversion.
    Peng KQ; Lee ST
    Adv Mater; 2011 Jan; 23(2):198-215. PubMed ID: 20931630
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.
    Almosni S; Delamarre A; Jehl Z; Suchet D; Cojocaru L; Giteau M; Behaghel B; Julian A; Ibrahim C; Tatry L; Wang H; Kubo T; Uchida S; Segawa H; Miyashita N; Tamaki R; Shoji Y; Yoshida K; Ahsan N; Watanabe K; Inoue T; Sugiyama M; Nakano Y; Hamamura T; Toupance T; Olivier C; Chambon S; Vignau L; Geffroy C; Cloutet E; Hadziioannou G; Cavassilas N; Rale P; Cattoni A; Collin S; Gibelli F; Paire M; Lombez L; Aureau D; Bouttemy M; Etcheberry A; Okada Y; Guillemoles JF
    Sci Technol Adv Mater; 2018; 19(1):336-369. PubMed ID: 29707072
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A review on two-dimensional (2D) perovskite material-based solar cells to enhance the power conversion efficiency.
    Elahi E; Dastgeer G; Siddiqui AS; Patil SA; Iqbal MW; Sharma PR
    Dalton Trans; 2022 Jan; 51(3):797-816. PubMed ID: 34874382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.
    ur Rehman A; Lee SH
    ScientificWorldJournal; 2013; 2013():470347. PubMed ID: 24459433
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fullerene derivatives as electron acceptors for organic photovoltaic cells.
    Mi D; Kim JH; Kim HU; Xu F; Hwang DH
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1064-84. PubMed ID: 24749413
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ten-percent solar-to-fuel conversion with nonprecious materials.
    Cox CR; Lee JZ; Nocera DG; Buonassisi T
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14057-61. PubMed ID: 25225379
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells.
    Ngo TT; Chavhan S; Kosta I; Miguel O; Grande HJ; Tena-Zaera R
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2836-41. PubMed ID: 24437500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber.
    Pietruszka R; Witkowski BS; Ozga M; Gwozdz K; Placzek-Popko E; Godlewski M
    Beilstein J Nanotechnol; 2021; 12():766-774. PubMed ID: 34367860
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental study on the electrical performance of a solar photovoltaic panel by water immersion.
    Sivakumar B; Navakrishnan S; Cibi MR; Senthil R
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42981-42989. PubMed ID: 34218373
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.
    Inganäs O; Admassie S
    Adv Mater; 2014 Feb; 26(6):830-48. PubMed ID: 24510661
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large-Area Fabrication.
    Zhao Q; Han R; Marshall AR; Wang S; Wieliczka BM; Ni J; Zhang J; Yuan J; Luther JM; Hazarika A; Li GR
    Adv Mater; 2022 Apr; 34(17):e2107888. PubMed ID: 35023606
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polymers in High-Efficiency Solar Cells: The Latest Reports.
    Gnida P; Amin MF; Pająk AK; Jarząbek B
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631829
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Environmentally Compatible Lead-Free Perovskite Solar Cells and Their Potential as Light Harvesters in Energy Storage Systems.
    Jeon I; Kim K; Jokar E; Park M; Lee HW; Diau EW
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443897
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Review of Recent Efforts in Cooling Photovoltaic Panels (PVs) for Enhanced Performance and Better Impact on the Environment.
    Hajjaj SSH; Aqeel AAKA; Sultan MTH; Shahar FS; Shah AUM
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630886
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications.
    Zhou K; Guo Z; Liu S; Lee JH
    Materials (Basel); 2015 Jul; 8(7):4565-4581. PubMed ID: 28793457
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Triazine: An Important Building Block of Organic Materials for Solar Cell Application.
    Dávila Cerón V; Illicachi LA; Insuasty B
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615449
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.