These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Antibacterial activity of heavy metal-loaded natural zeolite. Hrenovic J; Milenkovic J; Ivankovic T; Rajic N J Hazard Mater; 2012 Jan; 201-202():260-4. PubMed ID: 22178285 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites. Lv Y; Chen Y; Zheng Y; Li Q; Lei T; Yin P Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112194. PubMed ID: 34749193 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Sohrabnezhad Sh; Mehdipour Moghaddam MJ; Salavatiyan T Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():73-8. PubMed ID: 24531107 [TBL] [Abstract][Full Text] [Related]
25. Antibacterial and in vivo toxicological studies of Bi Qayyum A; Batool Z; Fatima M; Buzdar SA; Ullah H; Nazir A; Jabeen Q; Siddique S; Imran R Sci Rep; 2022 Aug; 12(1):14287. PubMed ID: 35995797 [TBL] [Abstract][Full Text] [Related]
26. Persulfate assisted photocatalytic and antibacterial activity of TiO Thambiliyagodage C; Liyanaarachchi H; Jayanetti M; Ekanayake G; Mendis A; Samarakoon U; Vigneswaran S Sci Rep; 2024 May; 14(1):12505. PubMed ID: 38822052 [TBL] [Abstract][Full Text] [Related]
27. Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties. Kubiak A; Siwińska-Ciesielczyk K; Goscianska J; Dobrowolska A; Gabała E; Czaczyk K; Jesionowski T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109839. PubMed ID: 31500036 [TBL] [Abstract][Full Text] [Related]
28. Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Mohammadi-Aloucheh R; Habibi-Yangjeh A; Bayrami A; Latifi-Navid S; Asadi A Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1200-1209. PubMed ID: 29527924 [TBL] [Abstract][Full Text] [Related]
29. Transparent Anti-SARS COV-2 Film from Copper(I) Oxide Incorporated in Zeolite Nanoparticles. Jampa S; Ratanatawanate C; Pimtong W; Aueviriyavit S; Chantho V; Sillapaprayoon S; Kunyanee C; Warin C; Gamonchuang J; Kumnorkaew P ACS Appl Mater Interfaces; 2022 Nov; 14(46):52334-52346. PubMed ID: 36352778 [TBL] [Abstract][Full Text] [Related]
30. Colloidal copper oxide nanoparticles leading to a biphasic dose-response in growth inhibition of Ferreira SR; Lopes JM; Paterno LG; Magalhães PO; Cunha-Filho M; Gelfuso GM; Gratieri T Future Microbiol; 2023 May; 18():471-479. PubMed ID: 37204307 [TBL] [Abstract][Full Text] [Related]
31. Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity. Xu S; Wu Q; Guo Y; Ning C; Dai K Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111493. PubMed ID: 33255060 [TBL] [Abstract][Full Text] [Related]
32. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. Yashnik SA; Surovtsova TA; Salnikov AV; Parmon VN Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676413 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Guan G; Zhang L; Zhu J; Wu H; Li W; Sun Q J Hazard Mater; 2021 Jan; 402():123542. PubMed ID: 32745874 [TBL] [Abstract][Full Text] [Related]
34. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. Lv P; Zhu L; Yu Y; Wang W; Liu G; Lu H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110669. PubMed ID: 32204097 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Yadollahi M; Gholamali I; Namazi H; Aghazadeh M Int J Biol Macromol; 2015 Feb; 73():109-14. PubMed ID: 25605426 [TBL] [Abstract][Full Text] [Related]
36. Comparison between silver- and copper-modified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans. Rossainz-Castro LG; De-La-Rosa-Gómez I; Olguín MT; Alcántara-Díaz D J Environ Manage; 2016 Dec; 183(Pt 3):763-770. PubMed ID: 27649609 [TBL] [Abstract][Full Text] [Related]
37. Antibacterial and cytotoxic assessment of poly (methyl methacrylate) based hybrid nanocomposites. Sathya S; Murthy PS; Devi VG; Das A; Anandkumar B; Sathyaseelan VS; Doble M; Venugopalan VP Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():886-896. PubMed ID: 30948126 [TBL] [Abstract][Full Text] [Related]
38. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Demirci S; Ustaoğlu Z; Yılmazer GA; Sahin F; Baç N Appl Biochem Biotechnol; 2014 Feb; 172(3):1652-62. PubMed ID: 24242073 [TBL] [Abstract][Full Text] [Related]
39. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Potbhare AK; Chaudhary RG; Chouke PB; Yerpude S; Mondal A; Sonkusare VN; Rai AR; Juneja HD Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():783-793. PubMed ID: 30889753 [TBL] [Abstract][Full Text] [Related]
40. Characterisation of copper oxide nanoparticles for antimicrobial applications. Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]