These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35955594)

  • 21. Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems.
    Grasso C; Lee C
    Bioinformatics; 2004 Jul; 20(10):1546-56. PubMed ID: 14962922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PROMALS3D: a tool for multiple protein sequence and structure alignments.
    Pei J; Kim BH; Grishin NV
    Nucleic Acids Res; 2008 Apr; 36(7):2295-300. PubMed ID: 18287115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment.
    Wright ES
    BMC Bioinformatics; 2015 Oct; 16():322. PubMed ID: 26445311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein sequence alignment analysis by local covariation: coevolution statistics detect benchmark alignment errors.
    Dickson RJ; Gloor GB
    PLoS One; 2012; 7(6):e37645. PubMed ID: 22715369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments.
    Neuwald AF; Lanczycki CJ; Hodges TK; Marchler-Bauer A
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32500917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kalign--an accurate and fast multiple sequence alignment algorithm.
    Lassmann T; Sonnhammer EL
    BMC Bioinformatics; 2005 Dec; 6():298. PubMed ID: 16343337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the accuracy of multiple sequence alignment algorithms by using computational intelligent techniques.
    Ortuño FM; Valenzuela O; Pomares H; Rojas F; Florido JP; Urquiza JM; Rojas I
    Nucleic Acids Res; 2013 Jan; 41(1):e26. PubMed ID: 23066102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SuiteMSA: visual tools for multiple sequence alignment comparison and molecular sequence simulation.
    Anderson CL; Strope CL; Moriyama EN
    BMC Bioinformatics; 2011 May; 12():184. PubMed ID: 21600033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments.
    Jones DT; Buchan DW; Cozzetto D; Pontil M
    Bioinformatics; 2012 Jan; 28(2):184-90. PubMed ID: 22101153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disentangling direct from indirect co-evolution of residues in protein alignments.
    Burger L; van Nimwegen E
    PLoS Comput Biol; 2010 Jan; 6(1):e1000633. PubMed ID: 20052271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    Várnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SAlign-a structure aware method for global PPI network alignment.
    Ayub U; Haider I; Naveed H
    BMC Bioinformatics; 2020 Nov; 21(1):500. PubMed ID: 33148180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PFASUM: a substitution matrix from Pfam structural alignments.
    Keul F; Hess M; Goesele M; Hamacher K
    BMC Bioinformatics; 2017 Jun; 18(1):293. PubMed ID: 28583067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution.
    Mao W; Kaya C; Dutta A; Horovitz A; Bahar I
    Bioinformatics; 2015 Jun; 31(12):1929-37. PubMed ID: 25697822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.
    Rodriguez-Rivas J; Marsili S; Juan D; Valencia A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15018-15023. PubMed ID: 27965389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction.
    Ju F; Zhu J; Zhang Q; Wei G; Sun S; Zheng WM; Bu D
    Bioinformatics; 2022 Jan; 38(4):990-996. PubMed ID: 34849579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
    Wei ZS; Yang JY; Shen HB; Yu DJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MINRMS: an efficient algorithm for determining protein structure similarity using root-mean-squared-distance.
    Jewett AI; Huang CC; Ferrin TE
    Bioinformatics; 2003 Mar; 19(5):625-34. PubMed ID: 12651721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.