These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35955639)

  • 1. Molecular Insight into the Self-Assembly Process of Cellulose Iβ Microfibril.
    Thu TTM; Moreira RA; Weber SAL; Poma AB
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Iβ microfibril interaction with pristine graphene in water: Effects of amphiphilicity by molecular simulation.
    Kong L; Alqus R; Yong CW; Todorov I; Eichhorn SJ; Bryce RA
    J Mol Graph Model; 2023 Jan; 118():108336. PubMed ID: 36182825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular origins of twist in cellulose I-beta.
    Bu L; Himmel ME; Crowley MF
    Carbohydr Polym; 2015 Jul; 125():146-52. PubMed ID: 25857969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling cellulose microfibrils: a twisted tale.
    Hadden JA; French AD; Woods RJ
    Biopolymers; 2013 Oct; 99(10):746-56. PubMed ID: 23681971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation studies of the insolubility of cellulose.
    Bergenstråhle M; Wohlert J; Himmel ME; Brady JW
    Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.
    Lee CM; Kubicki JD; Fan B; Zhong L; Jarvis MC; Kim SH
    J Phys Chem B; 2015 Dec; 119(49):15138-49. PubMed ID: 26615832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Wetting of Crystalline Cellulose.
    Trentin LN; Pereira CS; Silveira RL; Hill S; Sorieul M; Skaf MS
    Biomacromolecules; 2021 Oct; 22(10):4251-4261. PubMed ID: 34515474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs.
    Beckham GT; Matthews JF; Peters B; Bomble YJ; Himmel ME; Crowley MF
    J Phys Chem B; 2011 Apr; 115(14):4118-27. PubMed ID: 21425804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solvation structures of cellulose microfibrils in ionic liquids.
    Mostofian B; Smith JC; Cheng X
    Interdiscip Sci; 2011 Dec; 3(4):308-20. PubMed ID: 22179764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.
    Hayakawa D; Nishiyama Y; Mazeau K; Ueda K
    Carbohydr Res; 2017 Sep; 449():103-113. PubMed ID: 28759814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta.
    Nishiyama Y; Johnson GP; French AD; Forsyth VT; Langan P
    Biomacromolecules; 2008 Nov; 9(11):3133-40. PubMed ID: 18855441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the adhesion of a thin annealed film of oleic acid onto crystalline cellulose.
    Quddus MA; Rojas OJ; Pasquinelli MA
    Biomacromolecules; 2014 Apr; 15(4):1476-83. PubMed ID: 24650049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonds and twist in cellulose microfibrils.
    Kannam SK; Oehme DP; Doblin MS; Gidley MJ; Bacic A; Downton MT
    Carbohydr Polym; 2017 Nov; 175():433-439. PubMed ID: 28917886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interconversion of the Ialpha and Ibeta crystalline forms of cellulose by bending.
    Jarvis MC
    Carbohydr Res; 2000 Apr; 325(2):150-4. PubMed ID: 10795822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics of Cellulose Amphiphilicity at the Graphene-Water Interface.
    Alqus R; Eichhorn SJ; Bryce RA
    Biomacromolecules; 2015 Jun; 16(6):1771-83. PubMed ID: 26015270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ.
    Hadden JA; French AD; Woods RJ
    Cellulose (Lond); 2014 Apr; 21(2):879-884. PubMed ID: 24729665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal and molecular structures of cellulose I and II.
    Kroon-Batenburg LM; Kroon J
    Glycoconj J; 1997 Aug; 14(5):677-90. PubMed ID: 9298703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.