These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35955639)

  • 21. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall.
    Brett CT
    Int Rev Cytol; 2000; 199():161-99. PubMed ID: 10874579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic twist in Iβ cellulose microfibrils by tight-binding objective boundary calculations.
    Dumitrică T
    Carbohydr Polym; 2020 Feb; 230():115624. PubMed ID: 31887879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degree of polymerization of glucan chains shapes the structure fluctuations and melting thermodynamics of a cellulose microfibril.
    Chang R; Gross AS; Chu JW
    J Phys Chem B; 2012 Jul; 116(28):8074-83. PubMed ID: 22725724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of different wood-based microfibril cellulose for the preparation of reinforced hydrophobic polymer composite films via Pickering emulsion: A comparative study.
    Xu C; Xu N; Yu J; Hu L; Jia P; Fan Y; Lu C; Chu F
    Int J Biol Macromol; 2023 Feb; 227():815-826. PubMed ID: 36521716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructure of cellulose microfibrils in spruce wood.
    Fernandes AN; Thomas LH; Altaner CM; Callow P; Forsyth VT; Apperley DC; Kennedy CJ; Jarvis MC
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):E1195-203. PubMed ID: 22065760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2011 Nov; 115(46):13433-40. PubMed ID: 21950594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
    Agarwal V; Huber GW; Conner WC; Auerbach SM
    J Chem Phys; 2011 Oct; 135(13):134506. PubMed ID: 21992323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Origin of Strength and Stiffness in Bamboo Fibrils.
    Youssefian S; Rahbar N
    Sci Rep; 2015 Jun; 5():11116. PubMed ID: 26054045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase.
    Harris DM; Corbin K; Wang T; Gutierrez R; Bertolo AL; Petti C; Smilgies DM; Estevez JM; Bonetta D; Urbanowicz BR; Ehrhardt DW; Somerville CR; Rose JK; Hong M; Debolt S
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4098-103. PubMed ID: 22375033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate.
    Liu H; Cheng G; Kent M; Stavila V; Simmons BA; Sale KL; Singh S
    J Phys Chem B; 2012 Jul; 116(28):8131-8. PubMed ID: 22574852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water structuring over the hydrophobic surface of cellulose.
    Miyamoto H; Schnupf U; Brady JW
    J Agric Food Chem; 2014 Nov; 62(46):11017-23. PubMed ID: 25365241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of crystalline allomorphs in cellulose microfibril.
    Horikawa Y; Sugiyama J
    Biomacromolecules; 2009 Aug; 10(8):2235-9. PubMed ID: 19505136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose.
    Bellesia G; Chundawat SP; Langan P; Redondo A; Dale BE; Gnanakaran S
    J Phys Chem B; 2012 Jul; 116(28):8031-7. PubMed ID: 22712833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.
    Basu S; Omadjela O; Gaddes D; Tadigadapa S; Zimmer J; Catchmark JM
    ACS Nano; 2016 Feb; 10(2):1896-907. PubMed ID: 26799780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular imaging of halocynthia papillosa cellulose.
    Helbert W; Nishiyama Y; Okano T; Sugiyama J
    J Struct Biol; 1998 Dec; 124(1):42-50. PubMed ID: 9931272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks.
    Shen T; Gnanakaran S
    Biophys J; 2009 Apr; 96(8):3032-40. PubMed ID: 19383449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations.
    Miyamoto H; Umemura M; Aoyagi T; Yamane C; Ueda K; Takahashi K
    Carbohydr Res; 2009 Jun; 344(9):1085-94. PubMed ID: 19375694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.