These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35955639)
41. Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Miyamoto H; Umemura M; Aoyagi T; Yamane C; Ueda K; Takahashi K Carbohydr Res; 2009 Jun; 344(9):1085-94. PubMed ID: 19375694 [TBL] [Abstract][Full Text] [Related]
42. Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method. Kan Z; Zhu Q; Yang L; Huang Z; Jin B; Ma J J Phys Chem B; 2017 May; 121(17):4319-4332. PubMed ID: 28418670 [TBL] [Abstract][Full Text] [Related]
43. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Li Q; Renneckar S Biomacromolecules; 2011 Mar; 12(3):650-9. PubMed ID: 21210665 [TBL] [Abstract][Full Text] [Related]
44. The control of cellulose microfibril deposition in the cell wall of higher plants : I. Can directed membrane flow orient cellulose microfibrils? Indirect evidence from freeze-fractured plasma membranes of maize and pine seedlings. Mueller SC; Brown RM Planta; 1982 Jun; 154(6):489-500. PubMed ID: 24276344 [TBL] [Abstract][Full Text] [Related]
45. Temperature-dependent changes in hydrogen bonds in cellulose Ialpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Ibeta. Watanabe A; Morita S; Ozaki Y Biomacromolecules; 2007 Sep; 8(9):2969-75. PubMed ID: 17705428 [TBL] [Abstract][Full Text] [Related]
46. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics. Banerji B; Chatterjee M; Pal U; Maiti NC J Phys Chem B; 2017 Jul; 121(26):6367-6379. PubMed ID: 28593765 [TBL] [Abstract][Full Text] [Related]
47. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Djahedi C; Berglund LA; Wohlert J Carbohydr Polym; 2015 Oct; 130():175-82. PubMed ID: 26076614 [TBL] [Abstract][Full Text] [Related]
48. Structure of cellulose microfibrils in primary cell walls from collenchyma. Thomas LH; Forsyth VT; Sturcová A; Kennedy CJ; May RP; Altaner CM; Apperley DC; Wess TJ; Jarvis MC Plant Physiol; 2013 Jan; 161(1):465-76. PubMed ID: 23175754 [TBL] [Abstract][Full Text] [Related]
49. Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. Shen T; Langan P; French AD; Johnson GP; Gnanakaran S J Am Chem Soc; 2009 Oct; 131(41):14786-94. PubMed ID: 19824731 [TBL] [Abstract][Full Text] [Related]
50. Mixed gels from whey protein isolate and cellulose microfibrils. Peng J; Calabrese V; Ainis WN; Scager R; Velikov KP; Venema P; van der Linden E Int J Biol Macromol; 2019 Mar; 124():1094-1105. PubMed ID: 30476515 [TBL] [Abstract][Full Text] [Related]
51. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces. Hoja J; Maurer RJ; Sax AF J Phys Chem B; 2014 Jul; 118(30):9017-27. PubMed ID: 25036217 [TBL] [Abstract][Full Text] [Related]
52. Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Ialpha crystal model. Yui T; Shiiba H; Tsutsumi Y; Hayashi S; Miyata T; Hirata F J Phys Chem B; 2010 Jan; 114(1):49-58. PubMed ID: 19928978 [TBL] [Abstract][Full Text] [Related]
53. The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl beta-O-4 dimer onto a Ibeta cellulose whisker. Besombes S; Mazeau K Plant Physiol Biochem; 2005 Mar; 43(3):299-308. PubMed ID: 15854839 [TBL] [Abstract][Full Text] [Related]
54. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Baskin TI Protoplasma; 2001; 215(1-4):150-71. PubMed ID: 11732054 [TBL] [Abstract][Full Text] [Related]
55. Folded-chain structure of cellulose II suggested by molecular dynamics simulation. Yamane C; Miyamoto H; Hayakawa D; Ueda K Carbohydr Res; 2013 Sep; 379():30-7. PubMed ID: 23867295 [TBL] [Abstract][Full Text] [Related]
56. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. Gross AS; Chu JW J Phys Chem B; 2010 Oct; 114(42):13333-41. PubMed ID: 20883004 [TBL] [Abstract][Full Text] [Related]
57. Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates. Chen P; Wohlert J; Berglund L; Furó I J Phys Chem Lett; 2022 Jun; 13(24):5424-5430. PubMed ID: 35679323 [TBL] [Abstract][Full Text] [Related]
58. Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling. Ma H; Shi Q; Li X; Ren J; Wang Y; Li Z; Ning L J Comput Aided Mol Des; 2023 Jan; 37(1):39-51. PubMed ID: 36427107 [TBL] [Abstract][Full Text] [Related]
59. Interfacial interactions between spider silk protein and cellulose studied by molecular dynamics simulation. Zhao T; Ma H; Liu Y; Chen Z; Shi Q; Ning L J Mol Model; 2024 May; 30(5):156. PubMed ID: 38693294 [TBL] [Abstract][Full Text] [Related]
60. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Wang T; Yang H; Kubicki JD; Hong M Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]