These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35955796)

  • 1. Recent Advances and Future Directions in Downstream Processing of Therapeutic Antibodies.
    Matte A
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.
    Hummel J; Pagkaliwangan M; Gjoka X; Davidovits T; Stock R; Ransohoff T; Gantier R; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1700665. PubMed ID: 29341493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous downstream processing for high value biological products: A Review.
    Zydney AL
    Biotechnol Bioeng; 2016 Mar; 113(3):465-75. PubMed ID: 26153056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current challenges and recent advances on the path towards continuous biomanufacturing.
    Drobnjakovic M; Hart R; Kulvatunyou BS; Ivezic N; Srinivasan V
    Biotechnol Prog; 2023; 39(6):e3378. PubMed ID: 37493037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enablers of continuous processing of biotherapeutic products.
    Rathore AS; Zydney AL; Anupa A; Nikita S; Gangwar N
    Trends Biotechnol; 2022 Jul; 40(7):804-815. PubMed ID: 35034769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving mAb capture productivity on batch and continuous downstream processing using nanofiber PrismA adsorbents.
    Davis RR; Suber F; Heller I; Yang B; Martinez J
    J Biotechnol; 2021 Aug; 336():50-55. PubMed ID: 34118332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online monitoring and control of upstream cell culture process using 1D and 2D-LC with SegFlow interface.
    Chemmalil L; Wasalathanthri DP; Zhang X; Kuang J; Shao C; Barbour R; Bhavsar S; Prabhakar T; Knihtila R; West J; Puri N; McHugh K; Rehmann MS; He Q; Xu J; Borys MC; Ding J; Li Z
    Biotechnol Bioeng; 2021 Sep; 118(9):3593-3603. PubMed ID: 34185315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopharmaceutical Manufacturing: Historical Perspectives and Future Directions.
    Szkodny AC; Lee KH
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():141-165. PubMed ID: 35300518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology.
    Nadar S; Shooter G; Somasundaram B; Shave E; Baker K; Lua LHL
    Biotechnol J; 2021 Mar; 16(3):e2000309. PubMed ID: 33006254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of process mass intensity (PMI) of continuous and batch manufacturing processes for biologics.
    Madabhushi SR; Pinto NDS; Lin H
    N Biotechnol; 2022 Dec; 72():122-127. PubMed ID: 36368463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of Fully Integrated Continuous Antibody Processing: Effects on Productivity and COGm.
    Arnold L; Lee K; Rucker-Pezzini J; Lee JH
    Biotechnol J; 2019 Feb; 14(2):e1800061. PubMed ID: 29729129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.
    Jacquemart R; Vandersluis M; Zhao M; Sukhija K; Sidhu N; Stout J
    Comput Struct Biotechnol J; 2016; 14():309-18. PubMed ID: 27570613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online/at-line measurement, analysis and control of product titer and critical product quality attributes (CQAs) during process development.
    Chemmalil L; Prabhakar T; Kuang J; West J; Tan Z; Ehamparanathan V; Song Y; Xu J; Ding J; Li Z
    Biotechnol Bioeng; 2020 Dec; 117(12):3757-3765. PubMed ID: 32776503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
    Garcia FA; Vandiver MW
    PDA J Pharm Sci Technol; 2017; 71(3):189-205. PubMed ID: 27974629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process.
    Ötes O; Flato H; Winderl J; Hubbuch J; Capito F
    J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.
    Steinebach F; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Sep; 11(9):1126-41. PubMed ID: 27376629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host cell proteins in monoclonal antibody processing: Control, detection, and removal.
    Ito T; Lutz H; Tan L; Wang B; Tan J; Patel M; Chen L; Tsunakawa Y; Park B; Banerjee S
    Biotechnol Prog; 2024 Mar; ():e3448. PubMed ID: 38477405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed-Mode Chromatography and Its Role in Monoclonal Antibody Purification.
    Milne JJ
    Methods Mol Biol; 2023; 2699():15-29. PubMed ID: 37646991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progression of continuous downstream processing of monoclonal antibodies: Current trends and challenges.
    Somasundaram B; Pleitt K; Shave E; Baker K; Lua LHL
    Biotechnol Bioeng; 2018 Dec; 115(12):2893-2907. PubMed ID: 30080940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatography bioseparation technologies and in-silico modelings for continuous production of biotherapeutics.
    Behere K; Yoon S
    J Chromatogr A; 2020 Sep; 1627():461376. PubMed ID: 32823091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.