These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 3595591)
1. Chemical modification of charged amino acid moieties alters the electrophoretic mobilities of neurofilament subunits on SDS/polyacrylamide gels. Georges E; Mushynski WE Eur J Biochem; 1987 Jun; 165(2):281-7. PubMed ID: 3595591 [TBL] [Abstract][Full Text] [Related]
2. Multiple interactions of aluminum with neurofilament subunits: regulation by phosphate-dependent interactions between C-terminal extensions of the high and middle molecular weight subunits. Shea TB; Beermann ML J Neurosci Res; 1994 Jun; 38(2):160-6. PubMed ID: 8078101 [TBL] [Abstract][Full Text] [Related]
3. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. Lewis SE; Nixon RA J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556 [TBL] [Abstract][Full Text] [Related]
4. Dephosphorylation of neurofilaments by exogenous phosphatases has no effect on reassembly of subunits. Georges E; Lefebvre S; Mushynski WE J Neurochem; 1986 Aug; 47(2):477-83. PubMed ID: 3734790 [TBL] [Abstract][Full Text] [Related]
5. Hydrophobic and ionic effects upon the electrophoretic mobilities of the subunits of coupling factor 1 from mitochondria. Feinstein DL; Moudrianakis EN Anal Biochem; 1984 Feb; 136(2):362-71. PubMed ID: 6232867 [TBL] [Abstract][Full Text] [Related]
6. Influence of the phosphorylation state of neurofilament proteins on the interactions between purified filaments in vitro. Eyer J; Leterrier JF Biochem J; 1988 Jun; 252(3):655-60. PubMed ID: 2844152 [TBL] [Abstract][Full Text] [Related]
7. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. Kaufmann E; Geisler N; Weber K FEBS Lett; 1984 May; 170(1):81-4. PubMed ID: 6723964 [TBL] [Abstract][Full Text] [Related]
8. Location and sequence characterization of the major phosphorylation sites of the high molecular mass neurofilament proteins M and H. Geisler N; Vandekerckhove J; Weber K FEBS Lett; 1987 Sep; 221(2):403-7. PubMed ID: 3114005 [TBL] [Abstract][Full Text] [Related]
9. Hypophosphorylated neurofilament subunits in the cytoskeletal and soluble fractions of cultured bovine adrenal chromaffin cells. Georges E; Trifaró JM; Mushynski WE Neuroscience; 1987 Aug; 22(2):753-63. PubMed ID: 3118238 [TBL] [Abstract][Full Text] [Related]
10. Aluminum alters the electrophoretic properties of neurofilament proteins: role of phosphorylation state. Shea TB; Beermann ML; Nixon RA J Neurochem; 1992 Feb; 58(2):542-7. PubMed ID: 1729399 [TBL] [Abstract][Full Text] [Related]
11. Quaternary structure of the giant extracellular hemoglobin of the leech Macrobdella decora. Kapp OH; Qabar AN; Bonner MC; Stern MS; Walz DA; Schmuck M; Pilz I; Wall JS; Vinogradov SN J Mol Biol; 1990 May; 213(1):141-58. PubMed ID: 2338712 [TBL] [Abstract][Full Text] [Related]
12. Characterization of in-vitro-translated human regulatory and catalytic subunits of cAMP-dependent protein kinases. Foss KB; Landmark B; Skålhegg BS; Taskén K; Jellum E; Hansson V; Jahnsen T Eur J Biochem; 1994 Feb; 220(1):217-23. PubMed ID: 8119290 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5). Pant AC; Veeranna ; Pant HC; Amin N Brain Res; 1997 Aug; 765(2):259-66. PubMed ID: 9313898 [TBL] [Abstract][Full Text] [Related]
14. Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. Pant HC Biochem J; 1988 Dec; 256(2):665-8. PubMed ID: 2851997 [TBL] [Abstract][Full Text] [Related]
15. Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: dye-binding characteristics and amino acid compositions. Chiu FC; Norton WT J Neurochem; 1982 Nov; 39(5):1252-60. PubMed ID: 6889631 [TBL] [Abstract][Full Text] [Related]
16. Characterization of calcium-activated neutral protease (CANP)-associated protein kinase from bovine brain and its phosphorylation of neurofilaments. Zimmerman UJ; Schlaepfer WW Biochem Biophys Res Commun; 1985 Jun; 129(3):804-11. PubMed ID: 2990469 [TBL] [Abstract][Full Text] [Related]
17. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. Carden MJ; Schlaepfer WW; Lee VM J Biol Chem; 1985 Aug; 260(17):9805-17. PubMed ID: 3926771 [TBL] [Abstract][Full Text] [Related]
18. Binding of brain spectrin to the 70-kDa neurofilament subunit protein. Frappier T; Regnouf F; Pradel LA Eur J Biochem; 1987 Dec; 169(3):651-7. PubMed ID: 3121319 [TBL] [Abstract][Full Text] [Related]
19. Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry. Cleverley KE; Betts JC; Blackstock WP; Gallo JM; Anderton BH Biochemistry; 1998 Mar; 37(11):3917-30. PubMed ID: 9521713 [TBL] [Abstract][Full Text] [Related]
20. Association of cyclic-AMP-dependent protein kinase with neurofilaments. Dosemeci A; Pant HC Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):477-81. PubMed ID: 1312331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]