These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 35956580)
1. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms. Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580 [TBL] [Abstract][Full Text] [Related]
2. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete. Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575 [TBL] [Abstract][Full Text] [Related]
3. Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete. Al-Hashem MN; Amin MN; Ahmad W; Khan K; Ahmad A; Ehsan S; Al-Ahmad QMS; Qadir MG Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234267 [TBL] [Abstract][Full Text] [Related]
4. New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143573 [TBL] [Abstract][Full Text] [Related]
5. Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning. Shen Z; Deifalla AF; Kamiński P; Dyczko A Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629548 [TBL] [Abstract][Full Text] [Related]
6. Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete. Pakzad SS; Roshan N; Ghalehnovi M Sci Rep; 2023 Mar; 13(1):3646. PubMed ID: 36871074 [TBL] [Abstract][Full Text] [Related]
7. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Zheng D; Wu R; Sufian M; Kahla NB; Atig M; Deifalla AF; Accouche O; Azab M Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897626 [TBL] [Abstract][Full Text] [Related]
8. Advanced machine learning algorithms to evaluate the effects of the raw ingredients on flowability and compressive strength of ultra-high-performance concrete. Qian Y; Sufian M; Accouche O; Azab M PLoS One; 2022; 17(12):e0278161. PubMed ID: 36548370 [TBL] [Abstract][Full Text] [Related]
9. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
10. Statistical Analysis and Preliminary Study on the Mix Proportion Design of Self-Compacting Steel Fiber Reinforced Concrete. Ding X; Zhao M; Zhou S; Fu Y; Li C Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791614 [TBL] [Abstract][Full Text] [Related]
11. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients. Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254 [TBL] [Abstract][Full Text] [Related]
12. Optimization Based on Toughness and Splitting Tensile Strength of Steel-Fiber-Reinforced Concrete Incorporating Silica Fume Using Response Surface Method. Köksal F; Beycioğlu A; Dobiszewska M Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143530 [TBL] [Abstract][Full Text] [Related]
13. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers. Lee SC; Oh JH; Cho JY Materials (Basel); 2015 Mar; 8(4):1442-1458. PubMed ID: 28788011 [TBL] [Abstract][Full Text] [Related]
15. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions. Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144 [TBL] [Abstract][Full Text] [Related]
16. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Li Y; Zhang Q; Kamiński P; Deifalla AF; Sufian M; Dyczko A; Kahla NB; Atig M Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744270 [TBL] [Abstract][Full Text] [Related]
18. Flexural Toughness Test and Inversion Research on a Thermal Conductivity Formula on Steel Fiber-Reinforced Concrete Components Post-Fire. Li H; Chen B; Zhu K; Gong X Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897534 [TBL] [Abstract][Full Text] [Related]
19. Experimental Study on the Performance of Steel-Fiber-Reinforced Concrete for Remote-Pumping Construction. Zhao M; Li C; Li J; Yue L Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241292 [TBL] [Abstract][Full Text] [Related]
20. Mix Proportion Design of Self-Compacting SFRC with Manufactured Sand Based on the Steel Fiber Aggregate Skeleton Packing Test. Ding X; Zhao M; Li J; Shang P; Li C Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32599835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]