BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35956706)

  • 21. Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate.
    Rashad AM
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3784-3793. PubMed ID: 34389957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the Influence of Hydraulic Additives on the Foaming Process and Stability of the Produced Geopolymer Foams.
    Łach M; Pławecka K; Bąk A; Lichocka K; Korniejenko K; Cheng A; Lin WT
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Liquid-to-Solid and Alkaline Activator (Sodium Silicate to Sodium Hydroxide) Ratios on Fresh and Hardened Properties of Alkali-Activated Palm Oil Fuel Ash Geopolymer.
    Kwek SY; Awang H; Cheah CB
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Characterization of Lightweight Geopolymer Composite Reinforced with Hybrid Carbon and Steel Fibers.
    Baziak A; Pławecka K; Hager I; Castel A; Korniejenko K
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foamed Geopolymer Composites with the Addition of Glass Wool Waste.
    Kozub B; Bazan P; Gailitis R; Korniejenko K; Mierzwiński D
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and longlived climate pollutants.
    Lynch J; Cain M; Pierrehumbert R; Allen M
    Environ Res Lett; 2020 Apr; 15(4):044023. PubMed ID: 32395177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal performance evaluation of bio-bricks and conventional bricks in residential buildings in Aswan city, Egypt.
    Abd El-Hady RE; Mohamed AFA
    Sci Rep; 2023 Sep; 13(1):15993. PubMed ID: 37749115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of Mineral Wools as Alkali-Activated Material Precursor.
    Yliniemi J; Kinnunen P; Karinkanta P; Illikainen M
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Material Diets for Climate-Neutral Construction.
    Carcassi OB; Habert G; Malighetti LE; Pittau F
    Environ Sci Technol; 2022 Apr; 56(8):5213-5223. PubMed ID: 35377619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propriety assessment model for life cycle operational global warming potential of apartment buildings in Korea using energy efficiency and energy effective area data.
    Kim H; Lim H; Kim J; Roh S
    Sci Rep; 2023 Feb; 13(1):2420. PubMed ID: 36765064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions.
    Pedroso M; Silvestre JD; Gomes MG; Bersch JD; Flores-Colen I
    Gels; 2023 Oct; 9(11):. PubMed ID: 37998951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden.
    Ranefjärd O; Strandberg-de Bruijn PB; Wadsö L
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.
    Zampori L; Dotelli G; Vernelli V
    Environ Sci Technol; 2013 Jul; 47(13):7413-20. PubMed ID: 23745970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved calculation of warming-equivalent emissions for short-lived climate pollutants.
    Cain M; Lynch J; Allen MR; Fuglestvedt JS; Frame DJ; Macey AH
    NPJ Clim Atmos Sci; 2019 Sep; 2(1):29. PubMed ID: 31656858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China.
    Wang Y; Ma Q; Li Y; Sun T; Jin H; Zhao C; Milne E; Easter M; Paustian K; Yong HWA; McDonagh J
    Environ Manage; 2019 Dec; 64(6):772-782. PubMed ID: 31748948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.
    Lamnatou C; Motte F; Notton G; Chemisana D; Cristofari C
    J Environ Manage; 2018 Apr; 212():301-310. PubMed ID: 29453115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.
    Kalaw ME; Culaba A; Hinode H; Kurniawan W; Gallardo S; Promentilla MA
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eco-House Prototype Constructed with Alkali-Activated Blocks: Material Production, Characterization, Design, Construction, and Environmental Impact.
    Robayo-Salazar RA; Valencia-Saavedra W; Ramírez-Benavides S; Mejía de Gutiérrez R; Orobio A
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data on roof renovation and photovoltaic energy production including energy storage in existing residential buildings.
    D'Agostino D; Parker D; Melià P; Dotelli G
    Data Brief; 2022 Apr; 41():107874. PubMed ID: 35141376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.