BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 35956735)

  • 1. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects.
    Tsiklin IL; Shabunin AV; Kolsanov AV; Volova LT
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy.
    Fu R; Liu C; Yan Y; Li Q; Huang RL
    J Tissue Eng; 2021; 12():20417314211004211. PubMed ID: 33868628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting the "isolated island" effect in simulated bone defect repair using a hollow structural scaffold design.
    Liu X; Gao J; Liu J; Zhang L; Li M
    Front Bioeng Biotechnol; 2024; 12():1362913. PubMed ID: 38633663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects.
    Chen Y; Gan W; Cheng Z; Zhang A; Shi P; Zhang Y
    Mater Today Bio; 2024 Feb; 24():100920. PubMed ID: 38226013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.
    Bauso LV; La Fauci V; Longo C; Calabrese G
    Biology (Basel); 2024 Apr; 13(4):. PubMed ID: 38666849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing Bone with Natural Bone Graft: A Review of In Vivo Studies in Bone Defect Animal Model.
    Liu M; Lv Y
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30513940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering.
    Watson E; Mikos AG
    BME Front; 2023; 4():0004. PubMed ID: 37849672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation.
    Quek J; Vizetto-Duarte C; Teoh SH; Choo Y
    J Funct Biomater; 2024 May; 15(6):. PubMed ID: 38921519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-healing hydrogels for bone defect repair.
    Li W; Wu Y; Zhang X; Wu T; Huang K; Wang B; Liao J
    RSC Adv; 2023 Jun; 13(25):16773-16788. PubMed ID: 37283866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold translation: barriers between concept and clinic.
    Hollister SJ; Murphy WL
    Tissue Eng Part B Rev; 2011 Dec; 17(6):459-74. PubMed ID: 21902613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Scaffolds for Guided Bone Regeneration.
    Valamvanos TF; Dereka X; Katifelis H; Gazouli M; Lagopati N
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials.
    Yu Z; Wang H; Ying B; Mei X; Zeng D; Liu S; Qu W; Pan X; Pu S; Li R; Qin Y
    Mater Today Bio; 2023 Dec; 23():100834. PubMed ID: 38024841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents.
    Izumi K; Yortchan W; Aizawa Y; Kobayashi R; Hoshikawa E; Ling Y; Suzuki A
    Jpn Dent Sci Rev; 2023 Dec; 59():365-374. PubMed ID: 37954029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room.
    Cengiz IF; Pereira H; de Girolamo L; Cucchiarini M; Espregueira-Mendes J; Reis RL; Oliveira JM
    J Exp Orthop; 2018 May; 5(1):14. PubMed ID: 29790042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue engineering applications in otolaryngology-The state of translation.
    Niermeyer WL; Rodman C; Li MM; Chiang T
    Laryngoscope Investig Otolaryngol; 2020 Aug; 5(4):630-648. PubMed ID: 32864434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of responsive scaffolds in bone tissue engineering.
    Zhu T; Zhou H; Chen X; Zhu Y
    Front Bioeng Biotechnol; 2023; 11():1296881. PubMed ID: 38047283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrigendum to "Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering".
    Watson E; Mikos AG
    BME Front; 2023; 4():0013. PubMed ID: 37849663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Engineered Tissue the Future of Bladder Reconstruction: Con.
    St-Laurent MP; Chavez-Munoz C; Black PC
    Eur Urol Focus; 2023 Oct; ():. PubMed ID: 37872081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.
    Abdelaziz AG; Nageh H; Abdo SM; Abdalla MS; Amer AA; Abdal-Hay A; Barhoum A
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms.
    Mohammadzadeh M; Zarei M; Abbasi H; Webster TJ; Beheshtizadeh N
    J Biol Eng; 2024 Apr; 18(1):29. PubMed ID: 38649969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.