BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35956832)

  • 1. Phosphorus Modified Cardanol: A Greener Route to Reduce VolaTile Organic Compounds and Impart Flame Retardant Properties to Alkyd Resin Coatings.
    Denis M; Le Borgne D; Sonnier R; Caillol S; Totee C; Negrell C
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks.
    Ecochard Y; Decostanzi M; Negrell C; Sonnier R; Caillol S
    Molecules; 2019 May; 24(9):. PubMed ID: 31083463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Phosphorus Structures and Their Oxidation States on Flame-Retardant Properties of Polyhydroxyurethanes.
    Denis M; Coste G; Sonnier R; Caillol S; Negrell C
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.
    Zhang H; Xu M; Li B
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2811-21. PubMed ID: 27455714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Biosourced Flame Retardant Agents Based on Gallic and Ellagic Acids for Epoxy Resins.
    Karaseva V; Bergeret A; Lacoste C; Fulcrand H; Ferry L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31779081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins.
    Sag J; Goedderz D; Kukla P; Greiner L; Schönberger F; Döring M
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31627395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Copper Oxide on Epoxy Coatings with New Intumescent Polymer-Based Fire Retardant.
    Riyazuddin ; Bano S; Husain FM; Siddique JA; Alharbi KH; Khan RA; Alsalme A
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33348597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin.
    Lu X; Gu X
    Int J Biol Macromol; 2022 Apr; 205():539-552. PubMed ID: 35217079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flame-Retardant Cycloaliphatic Epoxy Systems with High Dielectric Performance for Electronic Packaging Materials.
    Jia XW; Mu WL; Shao ZB; Xu YJ
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Phosphorous-Based Bi-Functional Flame Retardant Based on Phosphaphenanthrene and Aluminum Hypophosphite for an Epoxy Thermoset.
    Xu B; Liu Y; Wei S; Zhao S; Qian L; Chen Y; Shan H; Zhang Q
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bio-based phosphaphenanthrene-containing derivative modified epoxy thermosets with good flame retardancy, high mechanical properties and transparency.
    Peng W; Xu YX; Nie SB; Yang W
    RSC Adv; 2021 Sep; 11(49):30943-30954. PubMed ID: 35498916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants.
    Zemła M; Prociak A; Michałowski S; Cabulis U; Kirpluks M; Simakovs K
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the Flame Retardant Properties and Fracture Toughness of DOPO and Nano-SiO
    Häublein M; Peter K; Bakis G; Mäkimieni R; Altstädt V; Möller M
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardanol and Eugenol Sourced Sustainable Non-halogen Flame Retardants for Enhanced Stability of Renewable Polybenzoxazines.
    Appavoo D; Amarnath N; Lochab B
    Front Chem; 2020; 8():711. PubMed ID: 33195009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorous-Nitrogen Modification of Epoxy Grafted Poly-Acrylic Resin: Synergistic Flame Retardment Effect.
    Liu C; Qiao H; Xu G; Liang Y; Yang J; Hu J
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterization of DOPO-Functionalized MWCNT and Its High Flame-Retardant Performance in Epoxy Nanocomposites.
    Gu L; Qiu C; Qiu J; Yao Y; Sakai E; Yang L
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32156085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification.
    Chen JH; Lu JH; Pu XL; Chen L; Wang YZ
    Chemosphere; 2022 May; 294():133778. PubMed ID: 35093421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of BMI monomers containing phosphate and phosphonate structure to enhance the flame retardant and toughness of BMI.
    Zhou X; Chu F; Xu Z; Qiu S; Hu Y
    J Colloid Interface Sci; 2022 Nov; 625():903-914. PubMed ID: 35777097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a Novel Flame Retardant Containing Phosphorus, Nitrogen, and Silicon and Its Application in Epoxy Resin.
    Fang M; Qian J; Wang X; Chen Z; Guo R; Shi Y
    ACS Omega; 2021 Mar; 6(10):7094-7105. PubMed ID: 33748623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a novel functionalized magnesium-based curing agent as an intrinsic flame retardant for epoxy resin.
    Zhao P; Zeng W; Yang Z; Yang Y; Li J; Shi J; Wen N; Li H; Guan J; Lei Z; Chen D
    Chemosphere; 2021 Jun; 273():129658. PubMed ID: 33529798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.