These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35956869)

  • 1. Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift.
    Xiong Z; Zhou H; Wu X; Chan SH; Xie Z; Dang D
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical and Economic Analysis of Fuel Cells for Forklift Applications.
    Metzger N; Li X
    ACS Omega; 2022 Jun; 7(22):18267-18275. PubMed ID: 35694482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective energy management strategy for fuel cell hybrid electric vehicle based on stochastic model predictive control.
    Ma Y; Li C; Wang S
    ISA Trans; 2022 Dec; 131():178-196. PubMed ID: 35581024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights.
    Tang M; Zhang S; Chen S
    Chem Soc Rev; 2022 Feb; 51(4):1529-1546. PubMed ID: 35138316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technoeconomic modelling and environmental assessment of a modern PEMFC CHP system: a case study of an eco-house at University of Nottingham.
    Sui S; Rasheed R; Li Q; Su Y; Riffat S
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29883-29895. PubMed ID: 31410831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells.
    Li D; Ma Z; Shao W; Li Y; Guo X
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; CaƱizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.
    Lee CY; Fan WY; Hsieh WJ
    Sensors (Basel); 2010; 10(7):6395-405. PubMed ID: 22163556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Five-in-One Microsensor for Real-Time Wireless Microscopic Diagnosis inside Electric Motorcycle Fuel Cell Stack Range Extender.
    Lee CY; Chen CH; Lee TJ; Cheong JS; Liu YC; Chen YC
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.
    Scrosati B
    Chem Rec; 2005; 5(5):286-97. PubMed ID: 16211622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.
    Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z
    ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and Lightweight Fuel Cell with High Specific Power Density.
    Ning F; He X; Shen Y; Jin H; Li Q; Li D; Li S; Zhan Y; Du Y; Jiang J; Yang H; Zhou X
    ACS Nano; 2017 Jun; 11(6):5982-5991. PubMed ID: 28605195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.
    Li J; Wang Z; Li J; Pan M; Tang H
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1181-93. PubMed ID: 24749421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell.
    Guo X; Xu B; Ma Z; Li Y; Li D
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.
    Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI
    ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Energy Management Strategy of Photovoltaic/PEMFC/Lithium-Ion Batteries/Supercapacitors Hybrid Renewable Power System Using White Shark Optimizer.
    Alhumade H; Rezk H; Louzazni M; Moujdin IA; Al-Shahrani S
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.
    Jung DW; Kim JH; Kim SH; Kim JB; Oh ES
    J Nanosci Nanotechnol; 2013 May; 13(5):3650-4. PubMed ID: 23858921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature.
    Ahn S; Koh H; Lee J; Park J
    Environ Res; 2019 Jun; 173():48-53. PubMed ID: 30897402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.
    Schiavetti P; Del Prete Z
    Rev Sci Instrum; 2007 Aug; 78(8):085107. PubMed ID: 17764355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency.
    Song J; Ye Q; Wang K; Guo Z; Dou M
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.