BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35956932)

  • 1. MD Simulation Studies for Selective Phytochemicals as Potential Inhibitors against Major Biological Targets of Diabetic Nephropathy.
    Kausar MA; Anwar S; Eltayb WA; Kuddus M; Khatoon F; El-Arabey AA; Khalifa AM; Rizvi MR; Najm MZ; Thakur L; Kar S; Abdalla M
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers.
    Kushwaha K; Sharma S; Gupta J
    Biochimie; 2020 Mar; 170():140-151. PubMed ID: 31954720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico identification of potential drug compound against Peroxisome proliferator-activated receptor-gamma by virtual screening and toxicity studies for the treatment of Diabetic Nephropathy.
    Singh S; Mohanty A
    J Biomol Struct Dyn; 2018 May; 36(7):1776-1787. PubMed ID: 28539091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nephroprotective effect of Combretum micranthum G. Don in nicotinamide-streptozotocin induced diabetic nephropathy in rats: In-vivo and in-silico experiments.
    Kpemissi M; Potârniche AV; Lawson-Evi P; Metowogo K; Melila M; Dramane P; Taulescu M; Chandramohan V; Suhas DS; Puneeth TA; S VK; Vlase L; Andrei S; Eklu-Gadegbeku K; Sevastre B; Veerapur VP
    J Ethnopharmacol; 2020 Oct; 261():113133. PubMed ID: 32673708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diabetic nephropathy: new approaches for improving glycemic control and reducing risk.
    Schernthaner G; Schernthaner GH
    J Nephrol; 2013; 26(6):975-85. PubMed ID: 23807645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase).
    Macalalad MAB; Gonzales AA
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513175
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Oyeyemi IT; Adewole KE; Gyebi GA
    J Biomol Struct Dyn; 2023; 41(21):12225-12241. PubMed ID: 36645154
    [No Abstract]   [Full Text] [Related]  

  • 8. Abelmoschus esculentus subfractions improved nephropathy with regulating dipeptidyl peptidase-4 and type 1 glucagon-like peptide receptor in type 2 diabetic rats.
    Peng CH; Lin HC; Lin CL; Wang CJ; Huang CN
    J Food Drug Anal; 2019 Jan; 27(1):135-144. PubMed ID: 30648566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy.
    Ma W; Wang KJ; Cheng CS; Yan GQ; Lu WL; Ge JF; Cheng YX; Li N
    J Ethnopharmacol; 2014 May; 153(3):840-5. PubMed ID: 24694395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach.
    Nazir N; Zahoor M; Nisar M; Khan I; Karim N; Abdel-Halim H; Ali A
    BMC Complement Altern Med; 2018 Dec; 18(1):332. PubMed ID: 30545352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy.
    Parveen A; Jin M; Kim SY
    Phytomedicine; 2018 Jan; 39():146-159. PubMed ID: 29433676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response.
    Khanra R; Dewanjee S; K Dua T; Sahu R; Gangopadhyay M; De Feo V; Zia-Ul-Haq M
    J Transl Med; 2015 Jan; 13():6. PubMed ID: 25591455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy.
    Dong Y; Zhao Q; Wang Y
    Sci Rep; 2021 Sep; 11(1):19496. PubMed ID: 34593896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-fibrosis therapy and diabetic nephropathy.
    Karihaloo A
    Curr Diab Rep; 2012 Aug; 12(4):414-22. PubMed ID: 22644874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Computations of Selective Phytochemicals as Potential Inhibitors Against Major Biological Targets of Diabetes Mellitus.
    Akhtar A; Amir A; Hussain W; Ghaffar A; Rasool N
    Curr Comput Aided Drug Des; 2019; 15(5):401-408. PubMed ID: 30706825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding needles in a haystack: application of network analysis and target enrichment studies for the identification of potential anti-diabetic phytochemicals.
    Fayaz SM; Suvanish Kumar VS; Rajanikant KG
    PLoS One; 2014; 9(11):e112911. PubMed ID: 25396726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes.
    Sharma P; Joshi T; Joshi T; Chandra S; Tamta S
    J Ethnopharmacol; 2020 Feb; 248():112268. PubMed ID: 31593813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy.
    Li KX; Ji MJ; Sun HJ
    Gene; 2021 May; 780():145532. PubMed ID: 33631244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Losartan and other angiotensin II antagonists for nephropathy in type 2 diabetes mellitus: a review of the clinical trial evidence.
    Ruilope LM; Segura J
    Clin Ther; 2003 Dec; 25(12):3044-64. PubMed ID: 14749145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current update in the management of diabetic nephropathy.
    Van Buren PN; Toto R
    Curr Diabetes Rev; 2013 Jan; 9(1):62-77. PubMed ID: 23167665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.