These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35957026)

  • 1. Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance.
    Alibakhshi A; Rahmanian S; Dastjerdi S; Malikan M; Karami B; Akgöz B; Civalek Ö
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.
    Abbasi M
    Micron; 2018 Apr; 107():20-27. PubMed ID: 29414132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Nonlinear Dynamics of Functionalization Layers: Enhancing Gas Sensor Sensitivity for Piezoelectrically Driven Microcantilever.
    Nsubuga L; Duggen L; Balzer F; Høegh S; Marcondes TL; Greenbank W; Rubahn HG; de Oliveira Hansen R
    ACS Sens; 2024 Apr; 9(4):1842-1856. PubMed ID: 38619068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient large amplitude primary resonance in in-extensional nanocapacitors: Nonlinear mean curvature component.
    Rahmanian S; Hosseini-Hashemi S; SoltanRezaee M
    Sci Rep; 2019 Dec; 9(1):20256. PubMed ID: 31882875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic analysis of a micro-cantilever beam in non-contact mode: Classic and Strain Gradient theories.
    Ali Mohammadi M; Farajollahi M; Yousefi-Koma A
    Microsc Res Tech; 2022 Jan; 85(1):352-363. PubMed ID: 34432344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces.
    Eslami S; Jalili N
    Ultramicroscopy; 2012 Jun; 117():31-45. PubMed ID: 22659234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant frequency and sensitivity of a caliper formed with assembled cantilever probes based on the modified strain gradient theory.
    Abbasi M; Afkhami SE
    Microsc Microanal; 2014 Dec; 20(6):1672-81. PubMed ID: 25205330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric parameters effect of the atomic force microscopy smart piezoelectric cantilever on the different rough surface topography quality by considering the capillary force.
    Habibnejad Korayem A; Taghizadeh M; Habibnejad Korayem M
    Microsc Res Tech; 2019 May; 82(5):517-529. PubMed ID: 30589133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of liquid medium on vibration and control of the AFM piezoelectric microcantilever.
    Korayem AH; Ghasemi P; Korayem MH
    Microsc Res Tech; 2020 Nov; 83(11):1427-1437. PubMed ID: 32666674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the Impact of Excitation Amplitude on AFM-TM Microcantilever Beam System's Dynamic Characteristics and Implementation of an Equivalent Circuit.
    Song P; Li X; Cui J; Chen K; Chu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Nonlinear Dynamics Behavior of Fractional Viscoelastic Beams.
    Suzuki JL; Kharazmi E; Varghaei P; Naghibolhosseini M; Zayernouri M
    J Comput Nonlinear Dyn; 2021 Nov; 16(11):111005. PubMed ID: 35832656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.
    Abbasi M; Karami Mohammadi A
    Microsc Res Tech; 2015 May; 78(5):408-15. PubMed ID: 25755027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment.
    Korayem AH; Imani F; Korayem MH
    Microsc Res Tech; 2019 Oct; 82(10):1787-1801. PubMed ID: 31329310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayered non-uniform atomic force microscope piezoelectric microcantilever control and vibration analysis considering different excitation based on the modified couple stress theory.
    Habibnejad Korayem M; Hashemi A; Habibnejad Korayem A
    Microsc Res Tech; 2021 May; 84(5):943-954. PubMed ID: 33231341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.
    Nahavandi A; Korayem MH
    Microsc Microanal; 2015 Oct; 21(5):1195-206. PubMed ID: 26324257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cantilever signature of tip detachment during contact resonance AFM.
    Kalafut D; Wagner R; Cadena MJ; Bajaj A; Raman A
    Beilstein J Nanotechnol; 2021; 12():1286-1296. PubMed ID: 34900510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact Resonance Atomic Force Microscopy Using Long, Massive Tips.
    Jaquez-Moreno T; Aureli M; Tung ARC
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.