These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35957106)

  • 1. Free Vibrations of Bernoulli-Euler Nanobeams with Point Mass Interacting with Heavy Fluid Using Nonlocal Elasticity.
    Barretta R; Čanađija M; Marotti de Sciarra F; Skoblar A
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity.
    Ahmad H; Abouelregal AE; Benhamed M; Alotaibi MF; Jendoubi A
    Sci Rep; 2022 Feb; 12(1):1894. PubMed ID: 35115646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory.
    De Rosa MA; Lippiello M
    ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model.
    Adali S
    Nano Lett; 2009 May; 9(5):1737-41. PubMed ID: 19344117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'.
    Tounsi A; Heireche H; Benzair A; Mechab I
    J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory.
    Su Y; Zhou Z
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastostatics of Bernoulli-Euler Beams Resting on Displacement-Driven Nonlocal Foundation.
    Vaccaro MS; Pinnola FP; Marotti de Sciarra F; Barretta R
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory.
    Wang J; Shen H
    J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Response of Multilayered Polymer Functionally Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) Nano-Beams in Hygro-Thermal Environment.
    Penna R; Lovisi G; Feo L
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects.
    Yan Z; Jiang LY
    Nanotechnology; 2011 Jun; 22(24):245703. PubMed ID: 21508448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Generalized Model for Curved Nanobeams Incorporating Surface Energy.
    Khater ME
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.