These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 35957117)
1. Highly Sensitive and Ultra-Responsive Humidity Sensors Based on Graphene Oxide Active Layers and High Surface Area Laser-Induced Graphene Electrodes. Paterakis G; Vaughan E; Gawade DR; Murray R; Gorgolis G; Matsalis S; Anagnostopoulos G; Buckley JL; O'Flynn B; Quinn AJ; Iacopino D; Galiotis C Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957117 [TBL] [Abstract][Full Text] [Related]
2. Flexible Humidity Sensor Based on a Graphene Oxide-Carbon Nanotube-Modified Co Li L; Zhang J; Song Y; Dan R; Xia X; Zhao J; Xu R ACS Appl Mater Interfaces; 2024 Jul; 16(26):33981-33992. PubMed ID: 38897966 [TBL] [Abstract][Full Text] [Related]
3. Humidity Sensor Composed of Laser-Induced Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin Moisture. Fei X; Huang J; Shi W Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571567 [TBL] [Abstract][Full Text] [Related]
4. Laser Fabrication of Humidity Sensors on Ethanol-Soaked Polyimide for Fully Contactless Respiratory Monitoring. Chen R; Liu S; Zhang C; Jiang C; Zhou W; Chen P; Wu D; Li D; Zhang J; Luo T ACS Appl Mater Interfaces; 2024 Aug; 16(34):45252-45264. PubMed ID: 39139068 [TBL] [Abstract][Full Text] [Related]
5. Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites. Al-Hamry A; Lu T; Chen H; Adiraju A; Nasraoui S; Brahem A; Bajuk-Bogdanović D; Weheabby S; Pašti IA; Kanoun O Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177018 [TBL] [Abstract][Full Text] [Related]
7. Facile and Cost-Effective Fabrication of Highly Sensitive, Fast-Response Flexible Humidity Sensors Enabled by Laser-Induced Graphene. Liu S; Chen R; Chen R; Jiang C; Zhang C; Chen D; Zhou W; Chen S; Luo T ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38049206 [TBL] [Abstract][Full Text] [Related]
8. A fast response and highly sensitive flexible humidity sensor based on a nanocomposite film of MoS Ge G; Ke N; Ma H; Ding J; Zhang W; Fan X Nanoscale; 2024 Oct; 16(38):17804-17816. PubMed ID: 39158201 [TBL] [Abstract][Full Text] [Related]
9. A performance improvement of enzyme-based electrochemical lactate sensor fabricated by electroplating novel PdCu mediator on a laser induced graphene electrode. Han JH; Hyun Park S; Kim S; Jungho Pak J Bioelectrochemistry; 2022 Dec; 148():108259. PubMed ID: 36179392 [TBL] [Abstract][Full Text] [Related]
10. An Improved Humidity Sensor with GO-Mn-Doped ZnO Nanocomposite and Dimensional Orchestration of Comb Electrode for Effective Bulk Manufacturing. Priyadharshini B; Valsalal P Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630881 [TBL] [Abstract][Full Text] [Related]
11. A Highly Responsive Graphene Oxide Humidity Sensor Based on PVA Nanofibers. Cui Z; Wang C; Liu X; Wang L; Wang LJ Langmuir; 2024 Aug; 40(31):16361-16366. PubMed ID: 39038262 [TBL] [Abstract][Full Text] [Related]
12. Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Le X; Liu Y; Peng L; Pang J; Xu Z; Gao C; Xie J Microsyst Nanoeng; 2019; 5():36. PubMed ID: 31636926 [TBL] [Abstract][Full Text] [Related]
13. Printable and Flexible Humidity Sensor Based on Graphene -Oxide-Supported MoTe Ni L; Li X; Cai F; Dong Z; Deng Y; Jiang T; Su Z; Chang H; Zhang Z; Luo Y Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110892 [TBL] [Abstract][Full Text] [Related]
14. Ultra-compact and high-performance suspended aluminum scandium nitride Lamb wave humidity sensor with a graphene oxide layer. Luo Z; Li D; Le X; He T; Shao S; Lv Q; Liu Z; Lee C; Wu T Nanoscale; 2024 May; 16(21):10230-10238. PubMed ID: 38629471 [TBL] [Abstract][Full Text] [Related]
15. All-Carbon Based Flexible Humidity Sensor. Wu Y; Huang Q; Nie J; Liang J; Joshi N; Hayasaka T; Zhao S; Zhang M; Wang X; Lin L J Nanosci Nanotechnol; 2019 Aug; 19(8):5310-5316. PubMed ID: 30913849 [TBL] [Abstract][Full Text] [Related]
16. Fiber Laser Writing of Highly Sensitive Nickel Nanoparticle-Incorporated Graphene Strain Sensors. Nankali M; Rouhi M; Jones J; Rathod S; Peng P ACS Appl Mater Interfaces; 2024 Jul; 16(30):39835-39846. PubMed ID: 39012315 [TBL] [Abstract][Full Text] [Related]
17. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Lan L; Le X; Dong H; Xie J; Ying Y; Ping J Biosens Bioelectron; 2020 Oct; 165():112360. PubMed ID: 32729493 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of self-powered humidity sensing of graphene oxide-based triboelectric nanogenerators by addition of graphene oxide nanoribbons. Ejehi F; Mohammadpour R; Asadian E; Fardindoost S; Sasanpour P Mikrochim Acta; 2021 Jul; 188(8):251. PubMed ID: 34255212 [TBL] [Abstract][Full Text] [Related]
19. Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel Yang Y; Su G; Li Q; Zhu Z; Liu S; Zhuo B; Li X; Ti P; Yuan Q RSC Adv; 2021 Jan; 11(3):1543-1552. PubMed ID: 35424105 [TBL] [Abstract][Full Text] [Related]
20. Ti Wang Z; Liu M; Shi S; Zhou X; Wu C; Wu K Anal Chim Acta; 2024 May; 1304():342526. PubMed ID: 38637046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]