These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35957132)

  • 21. Modulation of Z-Scheme Heterojunction Interface between Ultrathin C
    Wu B; Sun T; Liu N; Lu L; Zhang R; Shi W; Cheng P
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35641883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly porous BiOBr@NU-1000 Z-scheme heterojunctions for synergistic efficient adsorption and photocatalytic degradation of tetracycline.
    Zhang B; Meng Q; Lei Y; Wu G; Xu J; Meng X; Wu J; Hou H
    Dalton Trans; 2023 Dec; 52(47):17854-17860. PubMed ID: 37975215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi
    He Y; Wang D; Li X; Fu Q; Yin L; Yang Q; Chen H
    Chemosphere; 2021 Dec; 284():131386. PubMed ID: 34323787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi
    Wang C; Cai M; Liu Y; Yang F; Zhang H; Liu J; Li S
    J Colloid Interface Sci; 2022 Jan; 605():727-740. PubMed ID: 34365309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WO
    Zhou M; Tian X; Yu H; Wang Z; Ren C; Zhou L; Lin YW; Dou L
    ACS Omega; 2021 Oct; 6(40):26439-26453. PubMed ID: 34661001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the synergism mechanistic insight of O-vacancy and interfacial charge transfer in WO
    Sharma K; Sonu ; Sudhaik A; Ahamad T; Kaya S; Nguyen LH; Maslov MM; Le QV; Nguyen VH; Singh P; Raizada P
    Environ Res; 2024 Jul; 260():119610. PubMed ID: 39004393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of visible-light-driven silver iodide modified iodine-deficient bismuth oxyiodides Z-scheme heterojunctions with enhanced photocatalytic activity for Escherichia coli inactivation and tetracycline degradation.
    Yang YY; Niu CG; Wen XJ; Zhang L; Liang C; Guo H; Guan DL; Liu HY; Zeng GM
    J Colloid Interface Sci; 2019 Jan; 533():636-648. PubMed ID: 30195112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Photocatalytic Degradation of Tetracycline and Copper Complex by Bi
    Huang WX; Wei H; Jiang CY; Wang YP
    Huan Jing Ke Xue; 2020 Dec; 41(12):5488-5499. PubMed ID: 33374065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling band structure and oxidation-reduction potential to expound photodegradation performance difference of biochar-derived dissolved black carbon for organic pollutants under light irradiation.
    Guo Y; Guo Y; Hua S; Xu G; Xu Z; Yan C
    Sci Total Environ; 2022 May; 820():153300. PubMed ID: 35074367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO
    Chen F; Yang Q; Sun J; Yao F; Wang S; Wang Y; Wang X; Li X; Niu C; Wang D; Zeng G
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32887-32900. PubMed ID: 27934136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective CuO/Bi
    Koutavarapu R; Syed K; Pagidi S; Jeon MY; Rao MC; Lee DY; Shim J
    Chemosphere; 2022 Jan; 287(Pt 2):132015. PubMed ID: 34492418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on highly enhanced photocatalytic tetracycline degradation of type Ⅱ AgI/CuBi
    Guo F; Shi W; Wang H; Han M; Guan W; Huang H; Liu Y; Kang Z
    J Hazard Mater; 2018 May; 349():111-118. PubMed ID: 29414742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of cerium oxide nanoparticles immobilized on the surface of zinc vanadate nanoflowers for accelerated photocatalytic degradation of tetracycline under visible light irradiation.
    Luo J; Chen J; Chen X; Ning X; Zhan L; Zhou X
    J Colloid Interface Sci; 2021 Apr; 587():831-844. PubMed ID: 33248700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel AgI-decorated β-Bi₂O₃ nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance.
    Zhang Z; Jiang D; Xing C; Chen L; Chen M; He M
    Dalton Trans; 2015 Jul; 44(25):11582-91. PubMed ID: 26040758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into Photocatalytic Degradation Pathways and Mechanism of Tetracycline by an Efficient Z-Scheme NiFe-LDH/CTF-1 Heterojunction.
    Zhang J; Chen X; Chen Q; He Y; Pan M; Huang G; Bi J
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances.
    Zhao W; Li J; She T; Ma S; Cheng Z; Wang G; Zhao P; Wei W; Xia D; Leung DYC
    J Hazard Mater; 2021 Jan; 402():123839. PubMed ID: 33254816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag
    Reheman A; Kadeer K; Okitsu K; Halidan M; Tursun Y; Dilinuer T; Abulikemu A
    Ultrason Sonochem; 2019 Mar; 51():166-177. PubMed ID: 30401624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ternary dual
    Kusutaki T; Katsumata H; Tateishi I; Furukawa M; Kaneco S
    RSC Adv; 2019 Dec; 9(68):39843-39853. PubMed ID: 35541425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Z-scheme FeVO
    Chachvalvutikul A; Kaowphong S
    Nanotechnology; 2020 Apr; 31(14):145704. PubMed ID: 31835259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of Z-scheme g-C
    Du C; Zhang Z; Tan S; Yu G; Chen H; Zhou L; Yu L; Su Y; Zhang Y; Deng F; Wang S
    Environ Res; 2021 Sep; 200():111427. PubMed ID: 34062202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.