These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35957150)

  • 1. Efficient Heat Transfer Augmentation in Channels with Semicircle Ribs and Hybrid Al
    Togun H; Homod RZ; Yaseen ZM; Abed AM; Dhabab JM; Ibrahem RK; Dhahbi S; Rashidi MM; Ahmadi G; Yaïci W; Mahdi JM
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal performance augmentation in a pipe employing hybrid nanofluid and a plate as turbulator with V-shaped double-winglet ribs.
    Fan Z; Wang L; Liu C; Abdollahi SA
    Sci Rep; 2024 Mar; 14(1):7363. PubMed ID: 38548748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal-hydraulic performance and flow phenomenon evaluation of a curved trapezoidal corrugated channel with E-shaped baffles implementing hybrid nanofluid.
    Ahamed R; Salehin M; Ehsan MM
    Heliyon; 2024 Apr; 10(7):e28698. PubMed ID: 38617919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Performance of Hybrid-Inspired Coolant for Radiator Application.
    Benedict F; Kumar A; Kadirgama K; Mohammed HA; Ramasamy D; Samykano M; Saidur R
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced heat transfer characteristics of the mini hexagonal tube heat sink using hybrid nanofluids.
    Sriharan G; Harikrishnan S; Ali HM
    Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35970140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal efficiency in hybrid (Al
    Adnan ; Guedri K; Raizah Z; Tag-Eldin E; Ashraf W; Khan U; M Galal A
    Front Chem; 2022; 10():960369. PubMed ID: 36092669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.
    Suresh S; Venkitaraj KP; Hameed MS; Sarangan J
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2563-72. PubMed ID: 24745264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting MHD mixed convection in a semicircular cavity with hybrid nanofluids using AI.
    Das P; Mamun MAH
    Heliyon; 2024 Oct; 10(19):e38303. PubMed ID: 39386854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, thermophysical characterization and thermal performance analysis of novel Cu-MXene hybrid nanofluids for efficient coolant applications.
    Kumar KR; Shaik AH
    RSC Adv; 2023 Oct; 13(42):29536-29560. PubMed ID: 37818262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of convective heat transfer with Al2O3 nanofluids in the turbulent flow region.
    Kwon Y; Lee K; Park M; Koo K; Lee J; Doh Y; Lee S; Kim D; Jung Y
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7902-5. PubMed ID: 24266161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.
    Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K
    J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric investigation of a chilled water district cooling unit using mono and hybrid nanofluids.
    Okonkwo EC; Al-Ansari T
    Sci Rep; 2021 Sep; 11(1):19227. PubMed ID: 34584160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation on the impact of different design arrangements of helical heat exchangers with varying cross-sections utilizing ternary hybrid nanofluids.
    Fahad MK; Hasan MJ; Ifraj NF; Chandra Dey D
    Heliyon; 2024 Jul; 10(14):e34481. PubMed ID: 39082012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Laminar Convective Heat Transfer for Al₂O₃-Water Nanofluids Flowing through a Square Cross-Section Duct with a Constant Heat Flux.
    Ting HH; Hou SS
    Materials (Basel); 2015 Aug; 8(8):5321-5335. PubMed ID: 28793507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling.
    Jen Wai O; Gunnasegaran P; Hasini H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux.
    Ting HH; Hou SS
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.
    Yarmand H; Gharehkhani S; Kazi SN; Sadeghinezhad E; Safaei MR
    ScientificWorldJournal; 2014; 2014():369593. PubMed ID: 25254236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Al2O3-based nanofluids: a review.
    Sridhara V; Satapathy LN
    Nanoscale Res Lett; 2011 Jul; 6(1):456. PubMed ID: 21762528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and Hydraulic Performances of Carbon and Metallic Oxides-Based Nanomaterials.
    Afan HA; Aldlemy MS; Ahmed AM; Jawad AH; Naser MH; Homod RZ; Mussa ZH; Abdulkadhim AH; Scholz M; Yaseen ZM
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Transfer and Entropy Generation Abilities of MWCNTs/GNPs Hybrid Nanofluids in Microtubes.
    Hussien AA; Abdullah MZ; Yusop NM; Al-Kouz W; Mahmoudi E; Mehrali M
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.