BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35957213)

  • 1. Plant Tissue Modelling Using Power-Law Filters.
    Gadallah SI; Ghoneim MS; Elwakil AS; Said LA; Madian AH; Radwan AG
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms.
    Ghoneim MS; Gadallah SI; Said LA; Eltawil AM; Radwan AG; Madian AH
    Sci Rep; 2022 Mar; 12(1):3992. PubMed ID: 35273205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the double-dispersion Cole-Cole, Cole-Davidson and Havriliak-Negami electrochemical impedance spectroscopy models.
    Elwakil AS; Al-Ali AA; Maundy BJ
    Eur Biophys J; 2021 Sep; 50(6):915-926. PubMed ID: 34009404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for estimating the fractional Cole impedance model using single-frequency DC-biased sinusoidal excitation.
    Zhang F; Teng Z; Yang Y; Zhong H; Li J; Rutkove SB; Sanchez B
    Circuits Syst Signal Process; 2021 Feb; 40(2):543-558. PubMed ID: 33767523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of High-Input Impedance Electronically Tunable Voltage-Mode Second-Order Low-Pass, Band-Pass, and High-Pass Filters Based on LT1228 Integrated Circuits.
    Chen HP; Chen SJ; Chang CY
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Empirical Fractional-Order Electrical Models of Young and Old Dentines.
    Herencsar N; Kartci A; Cicekoglu O
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2307-2310. PubMed ID: 33018469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Study of Two Fractional-Order Equivalent Electrical Circuits for Modeling the Electrical Impedance of Dental Tissues.
    Herencsar N; Freeborn TJ; Kartci A; Cicekoglu O
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286886
    [No Abstract]   [Full Text] [Related]  

  • 10. A Harmonic Error Cancellation Method for Accurate Clock-Based Electrochemical Impedance Spectroscopy.
    Subhan S; Ha S
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):710-724. PubMed ID: 31226085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy.
    Cheon SI; Kweon SJ; Kim Y; Koo J; Ha S; Je M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy.
    Sanchez B; Vandersteen G; Rosell-Ferrer J; Cinca J; Bragos R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2518-21. PubMed ID: 22254853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data analysis in multiple-frequency bioelectrical impedance analysis.
    Cornish BH; Ward LC
    Physiol Meas; 1998 May; 19(2):275-83. PubMed ID: 9626691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance.
    Bora DJ; Dasgupta R
    IET Syst Biol; 2020 Oct; 14(5):230-240. PubMed ID: 33095744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
    Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S
    Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalent circuit models for a biomembrane impedance sensor and analysis of electrochemical impedance spectra based on support vector regression.
    Xu Y; Li C; Mei W; Guo M; Yang Y
    Med Biol Eng Comput; 2019 Jul; 57(7):1515-1524. PubMed ID: 30941674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modelling for Electrical Impedance Spectroscopy-Based Diagnosis of Oral Potential Malignant Disorders (OPMD).
    Heath JP; Hunter KD; Murdoch C; Walker DC
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circuital modelling in muscle tissue impedance measurements.
    Clemente F; Amato F; Adamo S; Russo M; Angelone F; Ponsiglione AM; Romano M
    Heliyon; 2024 Apr; 10(7):e28723. PubMed ID: 38596118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards optimization of plant cell detection in suspensions using impedance-based analyses and the unified equivalent circuit model.
    Kadan-Jamal K; Jog A; Sophocleous M; Georgiou J; Avni A; Shacham-Diamand Y
    Sci Rep; 2021 Sep; 11(1):19310. PubMed ID: 34588592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.