These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 35957316)

  • 1. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors.
    Gomes T; Matias D; Campos A; Cunha L; Roriz R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification.
    Gong W; Sun J; Shi S; Yang J; Du L; Zhu B; Song S
    Sensors (Basel); 2015 Sep; 15(9):21989-2002. PubMed ID: 26340630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conception of a High-Level Perception and Localization System for Autonomous Driving.
    Dauptain X; Koné A; Grolleau D; Cerezo V; Gennesseaux M; Do MT
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving.
    Alaba SY; Ball JE
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comb-based multispectral LiDAR providing reflectance and distance spectra.
    Han Y; Salido-Monzú D; Wieser A
    Opt Express; 2022 Nov; 30(23):42362-42375. PubMed ID: 36366691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time division multiplexing based multi-spectral semantic camera for LiDAR applications.
    Kim S; Jeong TI; Kim S; Choi E; Yang E; Song M; Eom TJ; Kim CS; Gliserin A; Kim S
    Sci Rep; 2024 May; 14(1):11445. PubMed ID: 38769129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of active multispectral lidar for detecting low reflectance targets.
    Kaasalainen S; Malkamäki T
    Opt Express; 2020 Jan; 28(2):1408-1416. PubMed ID: 32121852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications.
    Adnan M; Slavic G; Martin Gomez D; Marcenaro L; Regazzoni C
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.
    Morsy S; Shaker A; El-Rabbany A
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles.
    Horváth E; Pozna C; Unger M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy-Power Controllable LiDAR Sensor System with 3D Object Recognition for Autonomous Vehicle.
    Lee S; Lee D; Choi P; Park D
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR.
    Zhang C; Gao S; Niu Z; Pei J; Bi K; Sun G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercontinuum-based hyperspectral LiDAR for precision laser scanning.
    Ray P; Salido-Monzú D; Camenzind SL; Wieser A
    Opt Express; 2023 Sep; 31(20):33486-33499. PubMed ID: 37859130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data.
    Wang L; Wang X
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 3D Vulnerable Objects' Detection Using a Multi-Sensors System for Autonomous Vehicles.
    Khatab E; Onsy A; Abouelfarag A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.