These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35957319)

  • 1. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health.
    Mei P; Karimi HR; Chen F; Yang S; Huang C; Qiu S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning.
    Yao L; Wen J; Xu S; Zheng J; Hou J; Fang Z; Xiao Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities.
    Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P
    PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State of Health Prediction of Lithium-Ion Battery Based on Deep Dilated Convolution.
    Fu P; Chu L; Li J; Guo Z; Hu J; Hou Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications.
    El Marghichi M; Dangoury S; Zahrou Y; Loulijat A; Chojaa H; Banakhr FA; Mosaad MI
    PLoS One; 2023; 18(11):e0293753. PubMed ID: 37917753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de Macêdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State of energy estimation of lithium-ion battery based on long short-term memory optimization Adaptive Cubature Kalman filter.
    Hou E; Song H; Wang Z; Zhu J; Tang J; Shen G; Wang J
    PLoS One; 2024; 19(7):e0306165. PubMed ID: 38985707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health State Estimation of On-Board Lithium-Ion Batteries Based on GMM-BID Model.
    Feng S; Wang A; Cai J; Zuo H; Zhang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and evaluation of health state for power battery based on Ridge linear regression model.
    Huang B; Liao H; Wang Y; Liu X; Yan X
    Sci Prog; 2021 Oct; 104(4):368504211059047. PubMed ID: 34842468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries.
    Pang X; Zhong S; Wang Y; Yang W; Zheng W; Sun G
    Chem Rec; 2022 Oct; 22(10):e202200131. PubMed ID: 35785467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Development of a Battery State of Health Estimation Model for Efficient Battery Monitoring Systems.
    Choi HS; Choi JW; Whangbo TK
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of dual polarization battery model with high accuracy for a lithium-ion battery cell under dynamic driving cycle conditions.
    Tekin M; Karamangil MI
    Heliyon; 2024 Apr; 10(7):e28454. PubMed ID: 38571645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries.
    Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B
    Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.