These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 35957419)
1. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern. Borirakarawin M; Punsawad Y Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419 [TBL] [Abstract][Full Text] [Related]
2. The Development of a Multicommand Tactile Event-Related Potential-Based Brain-Computer Interface Utilizing a Low-Cost Wearable Vibrotactile Stimulator. Borirakarawin M; Siribunyaphat N; Aung ST; Punsawad Y Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409418 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning. Ogino M; Hamada N; Mitsukura Y J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357 [No Abstract] [Full Text] [Related]
4. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. Hill NJ; Schölkopf B J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135 [TBL] [Abstract][Full Text] [Related]
5. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state. Pires G; Barbosa S; Nunes UJ; Gonçalves E J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307 [TBL] [Abstract][Full Text] [Related]
6. Robust detection of event-related potentials in a user-voluntary short-term imagery task. Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161 [TBL] [Abstract][Full Text] [Related]
7. Estimating the intended sound direction of the user: toward an auditory brain-computer interface using out-of-head sound localization. Nambu I; Ebisawa M; Kogure M; Yano S; Hokari H; Wada Y PLoS One; 2013; 8(2):e57174. PubMed ID: 23437338 [TBL] [Abstract][Full Text] [Related]
8. Speech stream segregation to control an ERP-based auditory BCI. Velasco-Álvarez F; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33470970 [No Abstract] [Full Text] [Related]
9. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces. Ogino M; Kanoga S; Muto M; Mitsukura Y Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255 [TBL] [Abstract][Full Text] [Related]
10. How stimulation speed affects Event-Related Potentials and BCI performance. Höhne J; Tangermann M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261 [TBL] [Abstract][Full Text] [Related]
11. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces. An X; Höhne J; Ming D; Blankertz B PLoS One; 2014; 9(10):e111070. PubMed ID: 25350547 [TBL] [Abstract][Full Text] [Related]
12. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI). Kaufmann T; Kübler A J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406 [TBL] [Abstract][Full Text] [Related]
13. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context. Halder S; Leinfelder T; Schulz SM; Kübler A Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612 [TBL] [Abstract][Full Text] [Related]
14. Prediction of auditory and visual p300 brain-computer interface aptitude. Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain-Computer Interface Speller under Rapid Serial Visual Presentation. Ron-Angevin R; Fernández-Rodríguez Á; Velasco-Álvarez F; Lespinet-Najib V; André JM Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894107 [TBL] [Abstract][Full Text] [Related]
16. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces. Xu H; Zhang D; Ouyang M; Hong B Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211 [TBL] [Abstract][Full Text] [Related]
17. A novel hybrid auditory BCI paradigm combining ASSR and P300. Kaongoen N; Jo S J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832 [TBL] [Abstract][Full Text] [Related]
18. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm. Höhne J; Tangermann M PLoS One; 2014; 9(6):e98322. PubMed ID: 24886978 [TBL] [Abstract][Full Text] [Related]
19. Detection of fixation points using a small visual landmark for brain-computer interfaces. Zhou X; Xu M; Xiao X; Wang Y; Jung TP; Ming D J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130268 [No Abstract] [Full Text] [Related]
20. Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support. Choi YJ; Kwon OS; Kim SP Cogn Neurodyn; 2023 Dec; 17(6):1401-1416. PubMed ID: 37974580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]