BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35957472)

  • 1. Computational Modelling for Electrical Impedance Spectroscopy-Based Diagnosis of Oral Potential Malignant Disorders (OPMD).
    Heath JP; Hunter KD; Murdoch C; Walker DC
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of electrical impedance spectroscopy sensing surgical drill using computational modelling and experimental validation.
    Devaraj H; K Murphy E; J Halter R
    Biomed Phys Eng Express; 2022 Dec; 9(1):. PubMed ID: 36322960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions.
    Murdoch C; Brown BH; Hearnden V; Speight PM; D'Apice K; Hegarty AM; Tidy JA; Healey TJ; Highfield PE; Thornhill MH
    Int J Nanomedicine; 2014; 9():4521-32. PubMed ID: 25285005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of computational modelling technique to detect the bladder cancer.
    Keshtkar A; Mesbahi A; Rasta SH; Keshtkar A
    Phys Med; 2010 Jan; 26(1):34-7. PubMed ID: 19604712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of epithelial tissue impedance measured using three different designs of probe.
    Jones DM; Smallwood RH; Hose DR; Brown BH; Walker DC
    Physiol Meas; 2003 May; 24(2):605-23. PubMed ID: 12812442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA aneuploidy with image cytometry for detecting dysplasia and carcinoma in oral potentially malignant disorders: A prospective diagnostic study.
    Li C; Wu L; Deng Y; Shen X; Liu W; Shi L
    Cancer Med; 2020 Sep; 9(17):6411-6420. PubMed ID: 32638539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy.
    Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V
    Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity study and optimization of a 3D electric impedance tomography prostate probe.
    Borsic A; Halter R; Wan Y; Hartov A; Paulsen KD
    Physiol Meas; 2009 Jun; 30(6):S1-18. PubMed ID: 19491445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of corneal endothelial impedance with non-invasive external electrodes--a theoretical study.
    Mandel Y; Laufer S; Rubinsky B
    Med Eng Phys; 2012 Mar; 34(2):195-201. PubMed ID: 21835678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel 3D printing-based probe for impedance spectroscopic examination of oral mucosa: design and preliminary testing with phantom models.
    Emran S; Laitinen K; Lappalainen R; Myllymaa S
    J Med Eng Technol; 2020 Nov; 44(8):517-526. PubMed ID: 33135524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modelling and image reconstruction for Lorentz force electrical impedance tomography.
    Polydorides N
    Physiol Meas; 2018 Apr; 39(4):044003. PubMed ID: 29533919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
    Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S
    Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Feasibility of a Smart Surgical Probe for Verification of IRE Treatments Using Electrical Impedance Spectroscopy.
    Bonakdar M; Latouche EL; Mahajan RL; Davalos RV
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2674-84. PubMed ID: 26057529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of measurement electrode location in bladder urine monitoring using electrical impedance.
    Li Y; Peng Y; Yang X; Lu S; Gao J; Lin C; Li R
    Biomed Eng Online; 2019 Mar; 18(1):34. PubMed ID: 30902056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological changes may dominate the electrical properties of liver during reversible electroporation: Measurements and modelling.
    García-Sánchez T; Voyer D; Poignard C; Mir LM
    Bioelectrochemistry; 2020 Dec; 136():107627. PubMed ID: 32784102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.