These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35957657)

  • 21. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed).
    Windhamt L; Weist JS; Weis P
    Mar Pollut Bull; 2001 Oct; 42(10):811-6. PubMed ID: 11693635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence.
    Tyler AC; Mastronicola TA; McGlathery KJ
    Oecologia; 2003 Aug; 136(3):431-8. PubMed ID: 12750992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Burrowing and foraging activity of marsh crabs under different inundation regimes.
    Szura K; McKinney R; Wigand C; Oczkowski A; Hanson A; Gurak J; Gárate M
    J Exp Mar Biol Ecol; 2017 Jan; 486():282-289. PubMed ID: 35308104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.
    Adam Langley J; Mozdzer TJ; Shepard KA; Hagerty SB; Patrick Megonigal J
    Glob Chang Biol; 2013 May; 19(5):1495-503. PubMed ID: 23504873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.
    Nelson JL; Zavaleta ES
    PLoS One; 2012; 7(8):e38558. PubMed ID: 22879873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh.
    Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA.
    Rolando JL; Kolton M; Song T; Kostka JE
    Microbiome; 2022 Mar; 10(1):37. PubMed ID: 35227326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt Marsh Diking and Restoration: Biogeochemical Implications of Altered Wetland Hydrology.
    Portnoy JW
    Environ Manage; 1999 Jul; 24(1):111-120. PubMed ID: 10341067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay.
    Stralberg D; Brennan M; Callaway JC; Wood JK; Schile LM; Jongsomjit D; Kelly M; Parker VT; Crooks S
    PLoS One; 2011; 6(11):e27388. PubMed ID: 22110638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecological structure and function in a restored versus natural salt marsh.
    Rezek RJ; Lebreton B; Sterba-Boatwright B; Beseres Pollack J
    PLoS One; 2017; 12(12):e0189871. PubMed ID: 29261795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silica uptake by Spartina-evidence of multiple modes of accumulation from salt marshes around the world.
    Carey JC; Fulweiler RW
    Front Plant Sci; 2014; 5():186. PubMed ID: 24904599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sea level rise may increase extinction risk of a saltmarsh ontogenetic habitat specialist.
    Johnson DS; Williams BL
    Ecol Evol; 2017 Oct; 7(19):7786-7795. PubMed ID: 29043034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill.
    Zengel S; Weaver J; Mendelssohn IA; Graham SA; Lin Q; Hester MW; Willis JM; Silliman BR; Fleeger JW; McClenachan G; Rabalais NN; Turner RE; Hughes AR; Cebrian J; Deis DR; Rutherford N; Roberts BJ
    Ecol Appl; 2022 Jan; 32(1):e02489. PubMed ID: 34741358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.
    Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.
    Gittman RK; Keller DA
    Ecology; 2013 Dec; 94(12):2709-18. PubMed ID: 24597218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen uptake and allocation estimates for
    Hill TD; Sommer NR; Kanaskie CR; Santos EA; Oczkowski AJ
    J Exp Mar Biol Ecol; 2018; 21():466-472. PubMed ID: 31296971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.