BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 3595767)

  • 1. Establishment and characterization of murine bone marrow-derived spontaneously immortalized cell lines and clones expressing properties of normal macrophages.
    Loewenstein J; Yamin A; Gallily R
    Exp Hematol; 1987 Jul; 15(6):685-94. PubMed ID: 3595767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions.
    Blasi E; Radzioch D; Durum SK; Varesio L
    Eur J Immunol; 1987 Oct; 17(10):1491-8. PubMed ID: 3119352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of macrophage cell line from fresh bone marrow cells with a myc/raf recombinant retrovirus.
    Blasi E; Radzioch D; Merletti L; Varesio L
    Cancer Biochem Biophys; 1989 Oct; 10(4):303-17. PubMed ID: 2695237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of primary murine stroma induced by macrophage colony-stimulating factor.
    Yamada M; Suzu S; Akaiwa E; Wakimoto N; Hatake K; Motoyoshi K; Shimamura S
    J Cell Physiol; 1997 Oct; 173(1):1-9. PubMed ID: 9326443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Murine macrophage precursor characterization. I. Production, phenotype and differentiation of macrophage precursor hybrids.
    Leenen PJ; Slieker WA; Melis M; Van Ewijk W
    Eur J Immunol; 1990 Jan; 20(1):15-25. PubMed ID: 1968390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of bone marrow-derived macrophage cell lines by soft-agar cloning: regulation of macrophage heterogeneity at bone marrow level.
    Wijffels JF; de Rover Z; Kraal G; Beelen RH
    Exp Hematol; 1993 Apr; 21(4):538-44. PubMed ID: 8462663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine macrophage precursor characterization. II. Monoclonal antibodies against macrophage precursor antigens.
    Leenen PJ; Melis M; Slieker WA; Van Ewijk W
    Eur J Immunol; 1990 Jan; 20(1):27-34. PubMed ID: 2407538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective culture of primate marrow-derived macrophages in medium devoid of protein additives.
    Patel JM; Keene PA; Ross FP; Loubser MD; Mendelow BV
    Exp Hematol; 1989 Feb; 17(2):96-101. PubMed ID: 2643521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional heterogeneity of culture-grown bone marrow-derived macrophages. II. Lymphokine stimulation of antigen-presenting function.
    Lee KC; Wong M
    J Immunol; 1982 Jun; 128(6):2487-92. PubMed ID: 6978905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional differences and complementation between dendritic cells and macrophages in T-cell activation.
    Guidos C; Sinha AA; Lee KC
    Immunology; 1987 Jul; 61(3):269-76. PubMed ID: 2956179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons.
    Warren MK; Vogel SN
    J Immunol; 1985 Feb; 134(2):982-9. PubMed ID: 2578168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term culture of human bone marrow macrophages: macrophage development is associated with the production of granulomonopoietic enhancing activity (GM-EA).
    Wang SY; Castro-Malaspina H; Moore MA
    J Immunol; 1985 Aug; 135(2):1186-93. PubMed ID: 3891852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast-secreted macrophage colony-stimulating factor is responsible for generation of biphenotypic B/macrophage cells from a subset of mouse B lymphocytes.
    Borrello MA; Phipps RP
    J Immunol; 1999 Oct; 163(7):3605-11. PubMed ID: 10490953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo activity of lymphokine-activated macrophages in host defense against neoplasia.
    Fernandez-Cruz E; Ulich T; Schreiber RD
    J Immunol; 1985 May; 134(5):3489-96. PubMed ID: 3920323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of colony-stimulating factor(s) for granulocyte-macrophage and multipotential (granulocyte/erythroid/megakaryocyte/macrophage) hematopoietic progenitor cells (CFU-GEMM) by clonal lines of human IL-2-dependent T-lymphocytes.
    Greenberger JS; Krensky AM; Messner H; Burakoff SJ; Wandl U; Sakakeeny MA
    Exp Hematol; 1984 Oct; 12(9):720-7. PubMed ID: 6333354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental analysis of cytotoxicity mediated by activated macrophages against glioma cells in mice].
    Ohyama K
    Nihon Geka Hokan; 1993 Mar; 62(2):92-115. PubMed ID: 8239865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow adherent cell hemopoietic growth factor production.
    Quesenberry P; Song Z; Alberico T; Gualtieri R; Stewart M; Innes D; McGrath E; Cranston S; Kleeman E
    Prog Clin Biol Res; 1985; 184():247-56. PubMed ID: 3931091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of 20-alpha-hydroxysteroid dehydrogenase in mouse macrophages, hemopoietic cells, and cell lines and its induction by colony-stimulating factors.
    Hapel AJ; Osborne JM; Fung MC; Young IG; Allan W; Hume DA
    J Immunol; 1985 Apr; 134(4):2492-7. PubMed ID: 3919098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen.
    Shibata Y; Volkman A
    J Immunol; 1985 Dec; 135(6):3897-904. PubMed ID: 2933455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stromal cell lines which support lymphocyte growth: characterization, sensitivity to radiation and responsiveness to growth factors.
    Pietrangeli CE; Hayashi S; Kincade PW
    Eur J Immunol; 1988 Jun; 18(6):863-72. PubMed ID: 3260182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.