BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35958111)

  • 1. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network.
    Du H; Jiang D; Gao J; Zhang X; Jiang L; Zeng Y; Wu Z; Shen C; Xu L; Cao D; Hou T; Pan P
    Research (Wash D C); 2022; 2022():9873564. PubMed ID: 35958111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Models to Interrogate Proteome-Wide Covalent Ligandabilities Directed at Cysteines.
    Liu R; Clayton J; Shen M; Bhatnagar S; Shen J
    JACS Au; 2024 Apr; 4(4):1374-1384. PubMed ID: 38665640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Models to Interrogate Proteomewide Covalent Ligandabilities Directed at Cysteines.
    Liu R; Clayton J; Shen M; Bhatnagar S; Shen J
    bioRxiv; 2024 Jan; ():. PubMed ID: 37662346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Search for Covalently Ligandable Proteins in Biological Systems.
    Badshah SL; Mabkhot YN
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27598117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the ligandable proteome by paralog hopping with covalent probes.
    Zhang Y; Liu Z; Hirschi M; Brodsky O; Johnson E; Won SJ; Nagata A; Petroski MD; Majmudar JD; Niessen S; VanArsdale T; Gilbert AM; Hayward MM; Stewart AE; Nager AR; Melillo B; Cravatt B
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Covalent Binding Sites Targeting Cysteines Based on Computational Approaches.
    Zhang Y; Zhang D; Tian H; Jiao Y; Shi Z; Ran T; Liu H; Lu S; Xu A; Qiao X; Pan J; Yin L; Zhou W; Lu T; Chen Y
    Mol Pharm; 2016 Sep; 13(9):3106-18. PubMed ID: 27483186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines.
    Gao M; Günther S
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics.
    Peng Q; Weerapana E
    Cell Chem Biol; 2024 Mar; 31(3):550-564.e9. PubMed ID: 38086369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics.
    Koo TY; Lai H; Nomura DK; Chung CY
    Nat Commun; 2023 Jun; 14(1):3564. PubMed ID: 37322008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input.
    Yang K; Whitehouse RL; Dawson SL; Zhang L; Martin JG; Johnson DS; Paulo JA; Gygi SP; Yu Q
    Cell Chem Biol; 2024 Mar; 31(3):565-576.e4. PubMed ID: 38118439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank.
    Hewitt WM; Calabrese DR; Schneekloth JS
    Bioorg Med Chem; 2019 Jun; 27(11):2253-2260. PubMed ID: 30982658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.