These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3595846)

  • 41. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy.
    Fujiwara I; Vavylonis D; Pollard TD
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8827-32. PubMed ID: 17517656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization.
    Carlier MF; Pantaloni D
    J Biol Chem; 1988 Jan; 263(2):817-25. PubMed ID: 3335528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of manganous ion on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated G-actin: proximity of divalent metal ion and nucleotide binding sites.
    Brauer M; Sykes BD
    Biochemistry; 1982 Nov; 21(23):5934-9. PubMed ID: 7150537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP.
    Rebello CA; Ludescher RD
    Biochemistry; 1999 Oct; 38(40):13288-95. PubMed ID: 10529203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of actin-binding proteins on the thermal stability of monomeric actin.
    Pivovarova AV; Chebotareva NA; Kremneva EV; Lappalainen P; Levitsky DI
    Biochemistry; 2013 Jan; 52(1):152-60. PubMed ID: 23231323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10.
    Drewes G; Faulstich H
    J Biol Chem; 1991 Mar; 266(9):5508-13. PubMed ID: 2005093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states.
    Hannemann DE; Cao W; Olivares AO; Robblee JP; De La Cruz EM
    Biochemistry; 2005 Jun; 44(24):8826-40. PubMed ID: 15952789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A kinetic comparison between Mg-actin and Ca-actin.
    Selden LA; Gershman LC; Estes JE
    J Muscle Res Cell Motil; 1986 Jun; 7(3):215-24. PubMed ID: 3734052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding of phosphate ions to actin.
    Wanger M; Wegner A
    Biochim Biophys Acta; 1987 Aug; 914(2):105-13. PubMed ID: 3607065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Functions and localization of nucleotide-binding sites of CF1-ATPase using dialdehyde derivatives of ADP and ATP].
    Sytnik SK; Mal'ian AN
    Biokhimiia; 1983 Jun; 48(6):890-6. PubMed ID: 6224516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The binding of Mn2+ and ADP to myosin.
    Martonosi A
    J Supramol Struct; 1975; 3(4):323-32. PubMed ID: 127887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of [35S]-ATP alpha S and [3H]-alpha, beta-MeATP binding sites in rat brain cortical synaptosomes: regulation of ligand binding by divalent cations.
    Schäfer R; Reiser G
    Br J Pharmacol; 1997 Jul; 121(5):913-22. PubMed ID: 9222547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin.
    Blanchoin L; Pollard TD
    Biochemistry; 2002 Jan; 41(2):597-602. PubMed ID: 11781099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.
    Dupont Y
    Eur J Biochem; 1980 Aug; 109(1):231-8. PubMed ID: 6447598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y; Kurebayashi N; Harafuji H
    J Biochem; 1986 Nov; 100(5):1305-18. PubMed ID: 3493243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Further characterization of nucleotide binding sites on chloroplast coupling factor one.
    Bruist MF; Hammes GG
    Biochemistry; 1981 Oct; 20(22):6298-305. PubMed ID: 6458326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.