BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3595850)

  • 1. Molecular evolution of the calmodulin gene.
    Nojima H
    FEBS Lett; 1987 Jun; 217(2):187-90. PubMed ID: 3595850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the EF-hand calcium-binding protein family: evidence for exon shuffling and intron insertion.
    Perret C; Lomri N; Thomasset M
    J Mol Evol; 1988; 27(4):351-64. PubMed ID: 3146646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins.
    Kretsinger RH; Nakayama S
    J Mol Evol; 1993 May; 36(5):477-88. PubMed ID: 8510180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a gene for rat calmodulin.
    Nojima H; Sokabe H
    J Mol Biol; 1987 Feb; 193(3):439-45. PubMed ID: 3035194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism.
    Nakayama S; Kretsinger RH
    J Mol Evol; 1993 May; 36(5):458-76. PubMed ID: 8510179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2.
    Rhyner JA; Ottiger M; Wicki R; Greenwood TM; Strehler EE
    Eur J Biochem; 1994 Oct; 225(1):71-82. PubMed ID: 7925473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene.
    Chiou CY; Chen IP; Chen C; Wu HJ; Wei NV; Wallace CC; Chen CA
    J Mol Evol; 2008 Apr; 66(4):317-24. PubMed ID: 18322634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The single calmodulin gene of the cephalochordate Branchiostoma.
    Karabinos A; Riemer D
    Gene; 1997 Aug; 195(2):229-33. PubMed ID: 9305768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of calmodulin and calmodulin-like genes in the cephalochordate Branchiostoma.
    Karabinos A; Bhattacharya D
    J Mol Evol; 2000 Aug; 51(2):141-8. PubMed ID: 10948270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique exon-intron organization of a porcine S100C gene: close evolutionary relationship to calmodulin genes.
    Nakamura T; Hayashi M; Kato A; Sawazaki T; Yasue H; Nakano T; Tanaka T
    Biochem Biophys Res Commun; 1998 Feb; 243(3):647-52. PubMed ID: 9500989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable intron and exon sequence conservation in human and mouse homeobox Hox 1.3 genes.
    Tournier-Lasserve E; Odenwald WF; Garbern J; Trojanowski J; Lazzarini RA
    Mol Cell Biol; 1989 May; 9(5):2273-8. PubMed ID: 2568583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic structure of Chlamydomonas caltractin. Evidence for intron insertion suggests a probable genealogy for the EF-hand superfamily of proteins.
    Lee VD; Stapleton M; Huang B
    J Mol Biol; 1991 Sep; 221(1):175-91. PubMed ID: 1920403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intron-exon organization of the active human protein S gene PS alpha and its pseudogene PS beta: duplication and silencing during primate evolution.
    Ploos van Amstel HK; Reitsma PH; van der Logt CP; Bertina RM
    Biochemistry; 1990 Aug; 29(34):7853-61. PubMed ID: 2148111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splice junctions follow a 205-base ladder.
    Beckmann JS; Trifonov EN
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2380-3. PubMed ID: 2006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural organization of lower marine nonvertebrate calmodulin genes.
    Yuasa HJ; Suzuki T; Yazawa M
    Gene; 2001 Nov; 279(2):205-12. PubMed ID: 11733145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural organization of the ascidian, Halocynthia roretzi, calmodulin genes. The vicissitude of introns during the evolution of calmodulin genes.
    Yuasa HJ; Yamamoto H; Takagi T
    Gene; 1999 Mar; 229(1-2):163-9. PubMed ID: 10095116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intron analyses reveal multiple calmodulin copies in Littorina.
    Simpson RJ; Wilding CS; Grahame J
    J Mol Evol; 2005 Apr; 60(4):505-12. PubMed ID: 15883885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the human thyroid peroxidase gene: comparison and relationship to the human myeloperoxidase gene.
    Kimura S; Hong YS; Kotani T; Ohtaki S; Kikkawa F
    Biochemistry; 1989 May; 28(10):4481-9. PubMed ID: 2548579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of multiple rat calmodulin genes.
    Nojima H
    J Mol Biol; 1989 Jul; 208(2):269-82. PubMed ID: 2527998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural organization of the 5' region of the thyroglobulin gene. Evidence for intron loss and "exonization" during evolution.
    Parma J; Christophe D; Pohl V; Vassart G
    J Mol Biol; 1987 Aug; 196(4):769-79. PubMed ID: 3681978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.