These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35958683)

  • 1. UWB indoor positioning optimization algorithm based on genetic annealing and clustering analysis.
    Guo H; Li M; Zhang X; Gao X; Liu Q
    Front Neurorobot; 2022; 16():715440. PubMed ID: 35958683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of UWB indoor positioning based on hardware accelerated Fuzzy ISODATA.
    Guo H; Song S; Yin H; Ren D; Zhu X
    Sci Rep; 2024 Aug; 14(1):17985. PubMed ID: 39097640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of density clustering with noise combined with particle swarm optimization in UWB indoor positioning.
    Guo H; Yin H; Song S; Zhu X; Ren D
    Sci Rep; 2024 Jun; 14(1):13121. PubMed ID: 38849402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harris hawks optimization algorithm and BP neural network for ultra-wideband indoor positioning.
    Chen X; Fu M; Liu Z; Jia C; Liu Y
    Math Biosci Eng; 2022 Jun; 19(9):9098-9124. PubMed ID: 35942751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Succinct Method for Non-Line-of-Sight Mitigation for Ultra-Wideband Indoor Positioning System.
    Liu A; Lin S; Wang J; Kong X
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Indoor Positioning Method Based on UWB and Visual Fusion.
    Peng P; Yu C; Xia Q; Zheng Z; Zhao K; Chen W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid TOA-fingerprinting based localization of mobile nodes using UWB signaling for Non-line-of-sight conditions.
    Kabir MH; Kohno R
    Sensors (Basel); 2012; 12(8):11187-204. PubMed ID: 23112651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Inertial Navigation and Environmental Correction Indoor Ultra-Wideband Ranging and Positioning Methods.
    Han C; Xue S; Long L; Xiao X
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Strong Tracking Cubature Kalman Filter for UWB Positioning.
    Pu Y; Li X; Liu Y; Wang Y; Wu S; Qu T; Xi J
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing UWB Indoor Positioning Accuracy through Improved Snake Search Algorithm for NLOS/LOS Signal Classification.
    Wang F; Shui L; Tang H; Wei Z
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor Positioning System with UWB Based on a Digital Twin.
    Lou P; Zhao Q; Zhang X; Li D; Hu J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approach to Robust INS/UWB Integrated Positioning for Autonomous Indoor Mobile Robots.
    Liu J; Pu J; Sun L; He Z
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust and Adaptive Complementary Kalman Filter Based on Mahalanobis Distance for Ultra Wideband/Inertial Measurement Unit Fusion Positioning.
    Li X; Wang Y; Khoshelham K
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion.
    Cheng B; He X; Li X; Zhang N; Song W; Wu H
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustly Adaptive EKF PDR/UWB Integrated Navigation Based on Additional Heading Constraint.
    Yuan D; Zhang J; Wang J; Cui X; Liu F; Zhang Y
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian Filtering Approach for Error Mitigation in Ultra-Wideband Ranging.
    Xin J; Gao K; Shan M; Yan B; Liu D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Cost Foot-Placed UWB and IMU Fusion-Based Indoor Pedestrian Tracking System for IoT Applications.
    Naheem K; Kim MS
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NR-UIO: NLOS-Robust UWB-Inertial Odometry Based on Interacting Multiple Model and NLOS Factor Estimation.
    Hyun J; Myung H
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation of UWB Indoor Positioning for Sport Postures.
    Ridolfi M; Vandermeeren S; Defraye J; Steendam H; Gerlo J; De Clercq D; Hoebeke J; De Poorter E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29315267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of Blocking Categories for UWB Positioning in Complex Indoor Environment.
    Kong Y; Li C; Chen Z; Zhao X
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.