These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3595873)

  • 1. Raman spectroscopic study on the conformation of 11 S form acetylcholinesterase from Torpedo californica.
    Aslanian D; Gróf P; Négrerie M; Balkanski M; Taylor P
    FEBS Lett; 1987 Jul; 219(1):202-6. PubMed ID: 3595873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative Raman spectroscopic study of cholinesterases.
    Aslanian D; Grof P; Bon S; Masson P; Négrerie M; Chatel JM; Balkanski M; Taylor P; Massoulié J
    Biochimie; 1991 Nov; 73(11):1375-86. PubMed ID: 1799630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation similarities of the globular and tailed forms of acetylcholinesterase from Torpedo californica.
    Wu CS; Gan L; Yang JT
    Biochim Biophys Acta; 1987 Jan; 911(1):25-36. PubMed ID: 3790597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism studies of acetylcholinesterase conformation. Comparison of the 11 S and 5.6 S species and the differences induced by inhibitory ligands.
    Manavalan P; Taylor P; Johnson WC
    Biochim Biophys Acta; 1985 Jul; 829(3):365-70. PubMed ID: 4005268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Raman spectroscopic study of acetylcholine receptor-rich membranes from Torpedo marmorata. Interaction of the receptor with carbamylcholine and (+)-tubocurarine.
    Aslanian D; Grof P; Galzi JL; Changeux JP
    Biochim Biophys Acta; 1993 Jun; 1148(2):291-302. PubMed ID: 8504123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.
    Sussman JL; Harel M; Frolow F; Oefner C; Goldman A; Toker L; Silman I
    Science; 1991 Aug; 253(5022):872-9. PubMed ID: 1678899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metastable state of Torpedo californica acetylcholinesterase generated by modification with organomercurials.
    Kreimer DI; Dolginova EA; Raves M; Sussman JL; Silman I; Weiner L
    Biochemistry; 1994 Dec; 33(48):14407-18. PubMed ID: 7981200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of protein secondary structure from the laser Raman amide I spectrum.
    Williams RW
    J Mol Biol; 1983 Jun; 166(4):581-603. PubMed ID: 6864791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor.
    Colletier JP; Sanson B; Nachon F; Gabellieri E; Fattorusso C; Campiani G; Weik M
    J Am Chem Soc; 2006 Apr; 128(14):4526-7. PubMed ID: 16594661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets.
    Schweitzer-Stenner R
    J Phys Chem B; 2012 Apr; 116(14):4141-53. PubMed ID: 22390232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a "molten globule" state.
    Dolginova EA; Roth E; Silman I; Weiner LM
    Biochemistry; 1992 Dec; 31(48):12248-54. PubMed ID: 1333796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of acetylcholine receptor in the presence of agonists and antagonists.
    Wu CS; Sun XH; Yang JT
    J Protein Chem; 1990 Feb; 9(1):119-26. PubMed ID: 2340071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two partially unfolded states of Torpedo californica acetylcholinesterase.
    Kreimer DI; Shin I; Shnyrov VL; Villar E; Silman I; Weiner L
    Protein Sci; 1996 Sep; 5(9):1852-64. PubMed ID: 8880909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine.
    Bar-On P; Millard CB; Harel M; Dvir H; Enz A; Sussman JL; Silman I
    Biochemistry; 2002 Mar; 41(11):3555-64. PubMed ID: 11888271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of pH on circular dichroism and Raman spectroscopy of secondary structure of beta-casein from Chinese human milk].
    Ren HW; Zhang WS; Li XY; Liu N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):384-9. PubMed ID: 25970897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones.
    Millard CB; Shnyrov VL; Newstead S; Shin I; Roth E; Silman I; Weiner L
    Protein Sci; 2003 Oct; 12(10):2337-47. PubMed ID: 14500892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein.
    Maiti NC; Apetri MM; Zagorski MG; Carey PR; Anderson VE
    J Am Chem Soc; 2004 Mar; 126(8):2399-408. PubMed ID: 14982446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on acetylcholinesterase: influence of peripheral-site occupation on active-center conformation.
    Berman HA; Becktel W; Taylor P
    Biochemistry; 1981 Aug; 20(16):4803-10. PubMed ID: 7295650
    [No Abstract]   [Full Text] [Related]  

  • 19. Secondary structure of the intact H+,K+-ATPase and of its membrane-embedded region. An attenuated total reflection infrared spectroscopy, circular dichroism and Raman spectroscopy study.
    Raussens V; de Jongh H; Pézolet M; Ruysschaert JM; Goormaghtigh E
    Eur J Biochem; 1998 Mar; 252(2):261-7. PubMed ID: 9523697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural properties of connectin studied by ultraviolet resonance Raman spectroscopy and infrared dichroism.
    Uchida K; Harada I; Nakauchi Y; Maruyama K
    FEBS Lett; 1991 Dec; 295(1-3):35-8. PubMed ID: 1765163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.