These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35959556)

  • 1. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks.
    Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X
    J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework.
    Delesma FA; Leucke M; Golze D; Rinke P
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38205851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basis-Set-Error-Free Random-Phase Approximation Correlation Energies for Atoms Based on the Sternheimer Equation.
    Peng H; Yang S; Jiang H; Weng H; Ren X
    J Chem Theory Comput; 2023 Oct; 19(20):7199-7214. PubMed ID: 37811855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism.
    Beuerle M; Graf D; Schurkus HF; Ochsenfeld C
    J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized perturbative singles corrections to the random phase approximation method: Impact on noncovalent interaction energies of closed- and open-shell dimers.
    Joshi P; Voora VK
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-Kohn-Sham Random-Phase Approximation and Correction Terms in the Expectation-Value Coupled-Cluster Formulation.
    Cieśliński D; Tucholska AM; Modrzejewski M
    J Chem Theory Comput; 2023 Oct; 19(19):6619-6631. PubMed ID: 37774375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of Localized Resolution of the Identity in Periodic Hybrid Functional Calculations with Numerical Atomic Orbitals.
    Lin P; Ren X; He L
    J Phys Chem Lett; 2020 Apr; 11(8):3082-3088. PubMed ID: 32223245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytic gradients, geometry optimization and excited state potential energy surfaces from the particle-particle random phase approximation.
    Zhang D; Peng D; Zhang P; Yang W
    Phys Chem Chem Phys; 2015 Jan; 17(2):1025-38. PubMed ID: 25410624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride.
    Schäfer T; Gallo A; Irmler A; Hummel F; Grüneis A
    J Chem Phys; 2021 Dec; 155(24):244103. PubMed ID: 34972356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene.
    Pham KN; Modrzejewski M; Klimeš J
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy.
    Spadetto E; Philipsen PHT; Förster A; Visscher L
    J Chem Theory Comput; 2023 Mar; 19(5):1499-1516. PubMed ID: 36787494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Second-Order Properties for the Random Phase Approximation: Nuclear Magnetic Resonance Shieldings.
    Drontschenko V; Bangerter FH; Ochsenfeld C
    J Chem Theory Comput; 2023 Nov; 19(21):7542-7554. PubMed ID: 37863033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.
    Yang Y; Peng D; Lu J; Yang W
    J Chem Phys; 2014 Sep; 141(12):124104. PubMed ID: 25273409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermochemistry and Geometries for Transition-Metal Chemistry from the Random Phase Approximation.
    Waitt C; Ferrara NM; Eshuis H
    J Chem Theory Comput; 2016 Nov; 12(11):5350-5360. PubMed ID: 27749072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.