These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35959557)

  • 61. Sequential Ag
    Huang NH; Liu Y; Li RT; Chen J; Hu PP; Young DJ; Chen JX; Zhang WH
    Analyst; 2020 Apr; 145(7):2779-2788. PubMed ID: 32101233
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An anthraquinone-imidazole-based colorimetric and fluorescent sensor for the sequential detection of Ag
    Zhao C; Kong X; Shuang S; Wang Y; Dong C
    Analyst; 2020 Apr; 145(8):3029-3037. PubMed ID: 32134064
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells.
    Wu Q; Wang K; Wang Z; Sun Y; Cao D; Liu Z; Guan R; Zhao S; Yu X
    Talanta; 2018 May; 181():118-124. PubMed ID: 29426489
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.
    Li Y; Liu W; Zhang P; Zhang H; Wu J; Ge J; Wang P
    Biosens Bioelectron; 2017 Apr; 90():117-124. PubMed ID: 27886598
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An azine based sensor for selective detection of Cu
    Tiwari K; Kumar S; Kumar V; Kaur J; Arora S; Mahajan RK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():16-26. PubMed ID: 28978490
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new carbazole-based Schiff-base as fluorescent chemosensor for selective detection of Fe3+ and Cu2+.
    Yang L; Zhu W; Fang M; Zhang Q; Li C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():186-92. PubMed ID: 23523761
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Highly selective and ratiometric fluorescent nanoprobe for the detection of cysteine and its application in test strips.
    Wang F; Zhu Y; Xu J; Xu Z; Cheng G; Zhang W
    Anal Bioanal Chem; 2018 Aug; 410(20):4875-4884. PubMed ID: 29748760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A cerium-based fluorescent nanosensor for highly specific detection of glutathione over cysteine and homocysteine.
    Wang T; Tao Z; Qu C; Wang S; Liu Y
    Analyst; 2021 Jan; 146(1):283-288. PubMed ID: 33140752
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs.
    Wang F; Guo Z; Li X; Li X; Zhao C
    Chemistry; 2014 Sep; 20(36):11471-8. PubMed ID: 25056113
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission.
    Xu S; Zhou J; Dong X; Zhao W; Zhu Q
    Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo.
    Chen W; Luo H; Liu X; Foley JW; Song X
    Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Red-emitting fluorescent probe for discrimination of Cys/Hcy and GSH with a large Stokes shift under a single-wavelength excitation.
    Ren X; Zhang Y; Zhang F; Zhong H; Wang J; Liu X; Yang Z; Song X
    Anal Chim Acta; 2020 Feb; 1097():245-253. PubMed ID: 31910966
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A dual-response fluorescent probe for the discrimination of cysteine from glutathione and homocysteine.
    Ji X; Lv M; Pan F; Zhang J; Wang J; Wang J; Zhao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():1-7. PubMed ID: 30077035
    [TBL] [Abstract][Full Text] [Related]  

  • 74. BODIPY-based azamacrocyclic ensemble for selective fluorescence detection and quantification of homocysteine in biological applications.
    Li Z; Geng ZR; Zhang C; Wang XB; Wang ZL
    Biosens Bioelectron; 2015 Oct; 72():1-9. PubMed ID: 25951084
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells.
    Wang N; Chen M; Gao J; Ji X; He J; Zhang J; Zhao W
    Talanta; 2019 Apr; 195():281-289. PubMed ID: 30625544
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione.
    Zhang D; Yang Z; Li H; Pei Z; Sun S; Xu Y
    Chem Commun (Camb); 2016 Jan; 52(4):749-52. PubMed ID: 26565523
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations.
    Hu Q; Yu C; Xia X; Zeng F; Wu S
    Biosens Bioelectron; 2016 Jul; 81():341-348. PubMed ID: 26991600
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A novel colorimetric and fluorometric probe for biothiols based on MnO
    Xue H; Yu M; He K; Liu Y; Cao Y; Shui Y; Li J; Farooq M; Wang L
    Anal Chim Acta; 2020 Aug; 1127():39-48. PubMed ID: 32800136
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Simple Long-wavelength Fluorescent Probe for Simultaneous Discrimination of Cysteine/Homocysteine and Glutathione/Hydrogen Sulfide with Two Separated Fluorescence Emission Channels by Single Wavelength Excitation.
    Zhu H; Liu C; Zhang H; Jia P; Li Z; Zhang X; Yu Y; Sheng W; Zhu B
    Anal Sci; 2020 Feb; 36(2):255-259. PubMed ID: 31588065
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Cu
    Li X; Yadav P; Spingler B; Zelder F
    ChemistryOpen; 2022 Jun; 11(6):e202200106. PubMed ID: 35723424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.