These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35959702)

  • 1. High Performance Bifunctional Electrocatalysts Designed Based on Transition-Metal Sulfides for Rechargeable Zn-Air Batteries.
    Wang B; Li G
    Chemistry; 2022 Dec; 28(67):e202202062. PubMed ID: 35959702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives.
    Dong F; Wu M; Chen Z; Liu X; Zhang G; Qiao J; Sun S
    Nanomicro Lett; 2021 Dec; 14(1):36. PubMed ID: 34918185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries.
    Xie X; Zhai Z; Peng L; Zhang J; Shang L; Zhang T
    Sci Bull (Beijing); 2023 Nov; 68(22):2862-2875. PubMed ID: 37884426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-based composites for rechargeable zinc-air batteries: A mini review.
    Liu Y; Lu J; Xu S; Zhang W; Gao D
    Front Chem; 2022; 10():1074984. PubMed ID: 36465872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst.
    Gupta RK; Maurya PK; Mishra AK
    Chempluschem; 2024 Oct; 89(10):e202400278. PubMed ID: 38963318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries.
    Gao Y; Liu L; Jiang Y; Yu D; Zheng X; Wang J; Liu J; Luo D; Zhang Y; Shi Z; Wang X; Deng YP; Chen Z
    Nanomicro Lett; 2024 Mar; 16(1):162. PubMed ID: 38530476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries.
    Zhu Y; Yue K; Xia C; Zaman S; Yang H; Wang X; Yan Y; Xia BY
    Nanomicro Lett; 2021 Jun; 13(1):137. PubMed ID: 34138394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications.
    Qiu D; Wang H; Ma T; Huang J; Meng Z; Fan D; Bowen CR; Lu H; Liu Y; Chandrasekaran S
    ACS Nano; 2024 Aug; 18(33):21651-21684. PubMed ID: 39129497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries.
    Dong F; Wu M; Zhang G; Liu X; Rawach D; Tavares AC; Sun S
    Chem Asian J; 2020 Nov; 15(22):3737-3751. PubMed ID: 32997441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries.
    Chang H; Cong S; Wang L; Wang C
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Substrate-Induced Fabrication of Active Free-Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc-Air Batteries.
    Yan D; Xia C; He C; Liu Q; Chen G; Guo W; Xia BY
    Small; 2022 Feb; 18(7):e2106606. PubMed ID: 34874623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver decorated cobalt carbonate to enable high bifunctional activity for oxygen electrocatalysis and rechargeable Zn-air batteries.
    Gui L; Xu Y; Tang Q; Shi X; Zhang J; He B; Zhao L
    J Colloid Interface Sci; 2021 Dec; 603():252-258. PubMed ID: 34186403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries.
    Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q
    ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: current progress and prospects.
    Li Y; Cui M; Yin Z; Chen S; Ma T
    Chem Sci; 2020 Oct; 11(43):11646-11671. PubMed ID: 34094409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc-Air Batteries.
    Han Y; Duan H; Zhou C; Meng H; Jiang Q; Wang B; Yan W; Zhang R
    Nano Lett; 2022 Mar; 22(6):2497-2505. PubMed ID: 35266721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Rechargeable Zinc-air Batteries.
    Song L; Zhang J; Huang C; Zhao C; Yin X; Long H; Liu Y; Zhao Y
    Chem Asian J; 2023 May; 18(10):e202300150. PubMed ID: 37017570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.