These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 3596006)

  • 1. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient.
    Danilchik MV; Gerhart JC
    Dev Biol; 1987 Jul; 122(1):101-12. PubMed ID: 3596006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc uptake and distribution in Xenopus laevis oocytes and embryos.
    Falchuk KH; Montorzi M; Vallee BL
    Biochemistry; 1995 Dec; 34(50):16524-31. PubMed ID: 8845382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis.
    Schonbaum CP; Perrino JJ; Mahowald AP
    Mol Biol Cell; 2000 Feb; 11(2):511-21. PubMed ID: 10679010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferromagnetic isolation of endosomes involved in vitellogenin transfer into Xenopus oocytes.
    Richter HP; Bauer A
    Eur J Cell Biol; 1990 Feb; 51(1):53-63. PubMed ID: 1970297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intracellular fate of vitellogenin in Xenopus oocytes is determined by its extracellular concentration during endocytosis.
    Wall DA; Patel S
    J Biol Chem; 1987 Oct; 262(30):14779-89. PubMed ID: 3667603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile proteins and nonerythroid spectrin in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Wartiovaara J; Vassetzky SG
    Mol Reprod Dev; 1994 Jan; 37(1):99-109. PubMed ID: 8129937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study.
    Fagotto F; Maxfield FR
    J Cell Sci; 1994 Dec; 107 ( Pt 12)():3325-37. PubMed ID: 7706389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes.
    Melton DA
    Nature; 1987 Jul 2-8; 328(6125):80-2. PubMed ID: 3600777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand.
    Opresko L; Wiley HS; Wallace RA
    Cell; 1980 Nov; 22(1 Pt 1):47-57. PubMed ID: 7428040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activin incorporation into vitellogenic oocytes of Xenopus laevis.
    Fukui A; Shiurba R; Asashima M
    Cell Mol Biol (Noisy-le-grand); 1999 Jul; 45(5):545-54. PubMed ID: 10512187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Oogenesis of Mozambique tilapia. IV. Yolk formation].
    Chmilevskiĭ DA; Kameneva TO
    Tsitologiia; 2003; 45(1):5-13. PubMed ID: 12683231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oocyte growth in the sheepshead minnow: uptake of exogenous proteins by vitellogenic oocytes.
    Selman K; Wallace RA
    Tissue Cell; 1982; 14(3):555-71. PubMed ID: 7147228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contractile proteins and nonerythroid spectrin in the oogenesis of the clawed toad].
    Riabova LV; Virtanen I; Vartiovaara J; Vasetskiĭ SG
    Ontogenez; 1992; 23(5):487-500. PubMed ID: 1461633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-tubulin is asymmetrically distributed in the cortex of Xenopus oocytes.
    Gard DL
    Dev Biol; 1994 Jan; 161(1):131-40. PubMed ID: 7507446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray absorption fine structure as a monitor of zinc coordination sites during oogenesis of Xenopus laevis.
    Auld DS; Falchuk KH; Zhang K; Montorzi M; Vallee BL
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3227-31. PubMed ID: 8622918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implication of gap junction coupling in amphibian vitellogenin uptake.
    Mónaco ME; Villecco EI; Sánchez SS
    Zygote; 2007 May; 15(2):149-57. PubMed ID: 17462107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep cytoplasmic rearrangements during early development in Xenopus laevis.
    Danilchik MV; Denegre JM
    Development; 1991 Apr; 111(4):845-56. PubMed ID: 1879356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis.
    Kloc M; Bilinski S; Dougherty MT
    Exp Cell Res; 2007 May; 313(8):1639-51. PubMed ID: 17376434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway and kinetics of vitellogenin-gold internalization in the Xenopus oocyte.
    Busson S; Ovtracht L; Gounon P
    Biol Cell; 1989; 67(1):37-49. PubMed ID: 2557945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal microscopy of F-actin distribution in Xenopus oocytes.
    Roeder AD; Gard DL
    Zygote; 1994 May; 2(2):111-24. PubMed ID: 7874453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.