BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35960410)

  • 1. CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges.
    Luo N; Zhong W; Li J; Lu J; Dong R
    Mol Biol Rep; 2022 Dec; 49(12):11403-11408. PubMed ID: 35960410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted activation of
    Luo N; Zhong W; Li J; Zhai Z; Lu J; Dong R
    Nanomedicine (Lond); 2022 Aug; 17(20):1411-1427. PubMed ID: 36326013
    [No Abstract]   [Full Text] [Related]  

  • 4. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex.
    He M; Zhou X; Li Z; Yin X; Han W; Zhou J; Sun X; Liu X; Yao D; Liang H
    J Am Chem Soc; 2022 Jul; 144(28):12690-12697. PubMed ID: 35792375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation.
    Malzahn A; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Act3.0-Based Highly Efficient Multiplexed Gene Activation in Plants.
    Pan C; Qi Y
    Curr Protoc; 2022 Feb; 2(2):e365. PubMed ID: 35157372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex.
    Han S; Wei S; Wang X; Han X; Zhang M; Su M; Li Y; Guo J; Zeng W; Liu J; Gao Y; Shen L
    Integr Biol (Camb); 2018 Dec; 10(12):780-790. PubMed ID: 30520487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression.
    Sapozhnikov DM; Szyf M
    Nat Protoc; 2022 Dec; 17(12):2840-2881. PubMed ID: 36207463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclease-Deficient Clustered Regularly Interspaced Short Palindromic Repeat-Based Approaches for
    Lek A; Ma K; Woodman KG; Lek M
    Hum Gene Ther; 2021 Mar; 32(5-6):260-274. PubMed ID: 33446040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.