BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35960546)

  • 1. Integration of Multiple Phage Attachment Sites System to Create the Chromosomal T7 System for Protein Production in
    Cheng SY; Lin TH; Chen PT
    J Agric Food Chem; 2022 Aug; 70(33):10239-10247. PubMed ID: 35960546
    [No Abstract]   [Full Text] [Related]  

  • 2. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins.
    Fiege K; Frankenberg-Dinkel N
    Microb Cell Fact; 2020 Oct; 19(1):190. PubMed ID: 33023596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.
    Chiang CJ; Chen PT; Chao YP
    Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method to integrate multiple plasmids into the mycobacterial chromosome.
    Saviola B; Bishai WR
    Nucleic Acids Res; 2004 Jan; 32(1):e11. PubMed ID: 14718555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New cloning vectors for integration in the lambda attachment site attB of the Escherichia coli chromosome.
    Diederich L; Rasmussen LJ; Messer W
    Plasmid; 1992 Jul; 28(1):14-24. PubMed ID: 1387714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins.
    Seo EJ; Weibel S; Wehkamp J; Oelschlaeger TA
    Int J Med Microbiol; 2012 Nov; 302(6):276-87. PubMed ID: 22748509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli chromosome-based T7-dependent constitutive overexpression system and its application to generating a phenylalanine producing strain.
    Koma D; Kishida T; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    J Biosci Bioeng; 2018 Nov; 126(5):586-595. PubMed ID: 29958770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology.
    Ba F; Zhang Y; Ji X; Liu WQ; Ling S; Li J
    Biotechnol J; 2024 Jan; 19(1):e2300327. PubMed ID: 37800393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries.
    Shen J; Chen J; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4737-4746. PubMed ID: 28361238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA.
    Petersen KV; Martinussen J; Jensen PR; Solem C
    Appl Environ Microbiol; 2013 Jun; 79(12):3563-9. PubMed ID: 23542630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved cryptic plasmids in probiotic Escherichia coli Nissle 1917 for antibiotic-free pathway engineering.
    Dong MM; Song L; Xu JQ; Zhu L; Xiong LB; Wei DZ; Wang FQ
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5257-5267. PubMed ID: 37405431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli.
    Atlung T; Nielsen A; Rasmussen LJ; Nellemann LJ; Holm F
    Gene; 1991 Oct; 107(1):11-7. PubMed ID: 1660428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel plasmid vector designed for chromosomal gene integration and expression: use for developing a genetically stable Escherichia coli melanin production strain.
    Sabido A; Martínez LM; de Anda R; Martínez A; Bolívar F; Gosset G
    Plasmid; 2013 Jan; 69(1):16-23. PubMed ID: 22884755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing an Antibiotic-Free Protein Expression System for Ovalbumin Biosynthesis in Probiotic
    Liu C; Lv X; Liu L; Li J; Du G; Chen J; Liu Y
    J Agric Food Chem; 2024 Apr; 72(15):8693-8703. PubMed ID: 38574273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application.
    Ou B; Yang Y; Tham WL; Chen L; Guo J; Zhu G
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8693-9. PubMed ID: 27640192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid Vectors for
    Kan A; Gelfat I; Emani S; Praveschotinunt P; Joshi NS
    ACS Synth Biol; 2021 Jan; 10(1):94-106. PubMed ID: 33301298
    [No Abstract]   [Full Text] [Related]  

  • 17. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation.
    Seco EM; Fernández LÁ
    Microb Biotechnol; 2022 May; 15(5):1374-1391. PubMed ID: 34755474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TGV transgenic vectors for single-copy gene expression from the Escherichia coli chromosome.
    Gumbiner-Russo LM; Lombardo MJ; Ponder RG; Rosenberg SM
    Gene; 2001 Jul; 273(1):97-104. PubMed ID: 11483365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming T7RNA Polymerase in
    Effendi SSW; Ng IS
    ACS Synth Biol; 2022 Oct; 11(10):3471-3481. PubMed ID: 36087056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria.
    Haldimann A; Wanner BL
    J Bacteriol; 2001 Nov; 183(21):6384-93. PubMed ID: 11591683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.