These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35960566)

  • 1. Optical Trapping of High-Aspect-Ratio NaYF Hexagonal Prisms for kHz-MHz Gravitational Wave Detectors.
    Winstone G; Wang Z; Klomp S; Felsted GR; Laeuger A; Gupta C; Grass D; Aggarwal N; Sprague J; Pauzauskie PJ; Larson SL; Kalogera V; Geraci AA;
    Phys Rev Lett; 2022 Jul; 129(5):053604. PubMed ID: 35960566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for New Physics with a Levitated-Sensor-Based Gravitational-Wave Detector.
    Aggarwal N; Winstone GP; Teo M; Baryakhtar M; Larson SL; Kalogera V; Geraci AA
    Phys Rev Lett; 2022 Mar; 128(11):111101. PubMed ID: 35363016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Refrigeration by an Ytterbium-Doped NaYF
    Ortiz-Rivero E; Prorok K; Martín IR; Lisiecki R; Haro-González P; Bednarkiewicz A; Jaque D
    Small; 2021 Nov; 17(46):e2103122. PubMed ID: 34590416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser refrigeration of optically levitated sodium yttrium fluoride nanocrystals.
    Luntz-Martin DR; Felsted RG; Dadras S; Pauzauskie PJ; Vamivakas AN
    Opt Lett; 2021 Aug; 46(15):3797-3800. PubMed ID: 34329284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research.
    Kapasi DP; Eichholz J; McRae T; Ward RL; Slagmolen BJJ; Legge S; Hardman KS; Altin PA; McClelland DE
    Opt Express; 2020 Feb; 28(3):3280-3288. PubMed ID: 32122000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System.
    Wang X; Zhu Q; Hu M; Li W; Chen X; Li N; Zhu X; Hu H
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.
    Price CJ; Donnelly TD; Giltrap S; Stuart NH; Parker S; Patankar S; Lowe HF; Drew D; Gumbrell ET; Smith RA
    Rev Sci Instrum; 2015 Mar; 86(3):033502. PubMed ID: 25832224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting high-frequency gravitational waves with optically levitated sensors.
    Arvanitaki A; Geraci AA
    Phys Rev Lett; 2013 Feb; 110(7):071105. PubMed ID: 25166367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.
    Hsu JF; Ji P; Lewandowski CW; D'Urso B
    Sci Rep; 2016 Jul; 6():30125. PubMed ID: 27444654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory.
    Lough J; Schreiber E; Bergamin F; Grote H; Mehmet M; Vahlbruch H; Affeldt C; Brinkmann M; Bisht A; Kringel V; Lück H; Mukund N; Nadji S; Sorazu B; Strain K; Weinert M; Danzmann K
    Phys Rev Lett; 2021 Jan; 126(4):041102. PubMed ID: 33576646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle.
    Gieseler J; Deutsch B; Quidant R; Novotny L
    Phys Rev Lett; 2012 Sep; 109(10):103603. PubMed ID: 23005289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping volume control in optical tweezers using cylindrical vector beams.
    Skelton SE; Sergides M; Saija R; Iatì MA; Maragó OM; Jones PH
    Opt Lett; 2013 Jan; 38(1):28-30. PubMed ID: 23282827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional optical trapping and manipulation of single silver nanowires.
    Yan Z; Jureller JE; Sweet J; Guffey MJ; Pelton M; Scherer NF
    Nano Lett; 2012 Oct; 12(10):5155-61. PubMed ID: 22931238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of laser intensity noise over 1 MHz band for single atom trapping.
    Wang Y; Wang K; Fenton EF; Lin YW; Ni KK; Hood JD
    Opt Express; 2020 Oct; 28(21):31209-31215. PubMed ID: 33115099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Radio-Frequency Magneto-Optical Trap of SrF Molecules.
    Steinecker MH; McCarron DJ; Zhu Y; DeMille D
    Chemphyschem; 2016 Nov; 17(22):3664-3669. PubMed ID: 27860100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal position dependence of the second-harmonic generation of optically trapped silica microspheres.
    Sanchez L; Bruyère A; Bonhomme O; Benichou E; Brevet PF
    Opt Lett; 2020 Jun; 45(12):3196-3199. PubMed ID: 32538941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption-induced trapping in an anisotropic magneto-optical trap.
    Greenberg JA; Oriá M; Dawes AM; Gauthier DJ
    Opt Express; 2007 Dec; 15(26):17699-708. PubMed ID: 19551066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.