These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Kaniadakis G; Hristopulos DT Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516 [TBL] [Abstract][Full Text] [Related]
3. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics. Ding JJ; Wang Y; Zhang HD; Xu RX; Zheng X; Yan Y J Chem Phys; 2017 Jan; 146(2):024104. PubMed ID: 28088143 [TBL] [Abstract][Full Text] [Related]
4. A Numerical Study of Quantum Entropy and Information in the Wigner-Fokker-Planck Equation for Open Quantum Systems. Edrisi A; Patwa H; Morales Escalante JA Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539774 [TBL] [Abstract][Full Text] [Related]
5. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
6. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
7. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
8. Stochastic thermodynamics of Langevin systems under time-delayed feedback control: Second-law-like inequalities. Rosinberg ML; Munakata T; Tarjus G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042114. PubMed ID: 25974446 [TBL] [Abstract][Full Text] [Related]
9. Computing generalized Langevin equations and generalized Fokker-Planck equations. Darve E; Solomon J; Kia A Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10884-9. PubMed ID: 19549838 [TBL] [Abstract][Full Text] [Related]
10. Microscopic theory of anomalous diffusion based on particle interactions. Lutsko JF; Boon JP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776 [TBL] [Abstract][Full Text] [Related]
11. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear Ginzburg-Landau-type approach to quantum dissipation. López JL Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026110. PubMed ID: 14995523 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic quantum Fokker-Planck equations and their application to thermostatic Stirling engine. Koyanagi S; Tanimura Y J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39297384 [TBL] [Abstract][Full Text] [Related]
14. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
15. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
16. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics. Colmenares PJ Phys Rev E; 2018 May; 97(5-1):052126. PubMed ID: 29906902 [TBL] [Abstract][Full Text] [Related]
17. The Problem of Engines in Statistical Physics. Alicki R; Gelbwaser-Klimovsky D; Jenkins A Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441235 [TBL] [Abstract][Full Text] [Related]
18. Low-Temperature Quantum Fokker-Planck and Smoluchowski Equations and Their Extension to Multistate Systems. Ikeda T; Tanimura Y J Chem Theory Comput; 2019 Apr; 15(4):2517-2534. PubMed ID: 30776312 [TBL] [Abstract][Full Text] [Related]
19. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Maoutsa D; Reich S; Opper M Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573 [TBL] [Abstract][Full Text] [Related]