These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35960899)

  • 1. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
    Abedin S; Li Y; Sifat AA; Roy K; Potma EO
    Nano Lett; 2022 Aug; 22(16):6685-6691. PubMed ID: 35960899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman Scattering-Based Biosensing: New Prospects and Opportunities.
    Serebrennikova KV; Berlina AN; Sotnikov DV; Zherdev AV; Dzantiev BB
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering.
    Wang J; Zhang J; Tian Y; Fan C; Mu K; Chen S; Ding P; Liang E
    Opt Express; 2017 Jan; 25(1):497-507. PubMed ID: 28085843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced coherent anti-Stokes Raman scattering of molecules near metal-dielectric nanojunctions.
    Abedin S; Roy K; Jin X; Xia H; Brueck SRJ; Potma EO
    J Phys Chem C Nanomater Interfaces; 2022 May; 126(20):8760-8767. PubMed ID: 39253366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential imaging of biological structures with doubly-resonant coherent anti-stokes Raman scattering (CARS).
    Weeks TJ; Huser TR
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 21048664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced coherent anti-Stokes Raman imaging of lipids.
    Fast A; Kenison JP; Syme CD; Potma EO
    Appl Opt; 2016 Aug; 55(22):5994-6000. PubMed ID: 27505381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells.
    Gongalsky MB; Muftieva DA; Saarinen JKS; Isomaki A; Pervushin NV; Kopeina GS; Peltonen LJ; Strachan CJ; Zhivotovsky B; Santos HA; Osminkina LA
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4185-4195. PubMed ID: 34553922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires.
    Kim H; Taggart DK; Xiang C; Penner RM; Potma EO
    Nano Lett; 2008 Aug; 8(8):2373-7. PubMed ID: 18662040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.
    La Rocca R; Messina GC; Dipalo M; Shalabaeva V; De Angelis F
    Small; 2015 Sep; 11(36):4632-7. PubMed ID: 26114644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.
    Kneipp J; Kneipp K
    ACS Nano; 2024 Aug; 18(32):20851-20860. PubMed ID: 39088308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent Anti-Stokes Raman Scattering Spectroscopy Using a Double-Wavelength-Emission Electronically Tuned Ti:Sapphire Laser.
    Hirai N; Maeda Y; Hashimoto K; Andriana BB; Matsuyoshi H; Sato H
    Appl Spectrosc; 2021 Aug; 75(8):988-993. PubMed ID: 34041958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance enhanced coherent anti-Stokes Raman scattering.
    Hudson B; Hetherington W; Cramer S; Chabay I; Klauminzer GK
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3798-802. PubMed ID: 1069264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent anti-Stokes Raman scattering in silicon nanowire ensembles.
    Golovan LA; Gonchar KA; Osminkina LA; Timoshenko VY; Petrov GI; Yakovlev VV
    Laser Phys Lett; 2012 Feb; 9(2):145-150. PubMed ID: 22707925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent anti-stokes Raman scattering microscopy for high speed non- staining biomolecular imaging.
    Hashimoto M; Minamikawa T; Araki T
    Curr Pharm Biotechnol; 2013; 14(2):150-8. PubMed ID: 22356111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.