BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 35961044)

  • 21. Resynthesis of Brassica napus through hybridization between B. juncea and B. carinata.
    Chatterjee D; Banga S; Gupta M; Bharti S; Salisbury PA; Banga SS
    Theor Appl Genet; 2016 May; 129(5):977-90. PubMed ID: 26849238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome structure affects the rate of autosyndesis and allosyndesis in AABC, BBAC and CCAB Brassica interspecific hybrids.
    Mason AS; Huteau V; Eber F; Coriton O; Yan G; Nelson MN; Cowling WA; Chèvre AM
    Chromosome Res; 2010 Sep; 18(6):655-66. PubMed ID: 20571876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.
    Yang J; Liu G; Zhao N; Chen S; Liu D; Ma W; Hu Z; Zhang M
    Plant Biol (Stuttg); 2016 May; 18(3):527-36. PubMed ID: 27079962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important
    Li P; Zhang S; Li F; Zhang S; Zhang H; Wang X; Sun R; Bonnema G; Borm TJ
    Front Plant Sci; 2017; 8():111. PubMed ID: 28210266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species.
    Marquez-Lema A; Velasco L; Perez-Vich B
    J Appl Genet; 2010; 51(2):123-31. PubMed ID: 20453299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.
    Sun F; Fan G; Hu Q; Zhou Y; Guan M; Tong C; Li J; Du D; Qi C; Jiang L; Liu W; Huang S; Chen W; Yu J; Mei D; Meng J; Zeng P; Shi J; Liu K; Wang X; Wang X; Long Y; Liang X; Hu Z; Huang G; Dong C; Zhang H; Li J; Zhang Y; Li L; Shi C; Wang J; Lee SM; Guan C; Xu X; Liu S; Liu X; Chalhoub B; Hua W; Wang H
    Plant J; 2017 Nov; 92(3):452-468. PubMed ID: 28849613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny.
    Katche E; Katche EI; Vasquez-Teuber P; Idris Z; Lo YT; Nugent D; Zou J; Batley J; Mason AS
    Chromosome Res; 2023 Aug; 31(3):22. PubMed ID: 37596507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids of Brassica juncea and B. carinata with B. maurorum.
    Yao XC; Du XZ; Ge XH; Chen JP; Li ZY
    Genome; 2010 Jan; 53(1):14-22. PubMed ID: 20130745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analysis of cytokinin response factors in Brassica diploids and amphidiploids and insights into the evolution of Brassica species.
    Kong L; Zhao K; Gao Y; Miao L; Chen C; Deng H; Liu Z; Yu X
    BMC Genomics; 2018 Oct; 19(1):728. PubMed ID: 30285607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer of Brassica tournefartii (TT) genes to allotetraploid oilseed Brassica species (B. juncea AABB, B. napus AACC, B. carinata BBCC): homoeologous pairing is more pronounced in the three-genome hybrids (TACC, TBAA, TCAA, TCBB) as compared to allodiploids (TA, TB, TC).
    Nagpal R; Raina SN; Sodhi YS; Mukhopadhyay A; Arumugam N; Pradhan AK; Pental D
    Theor Appl Genet; 1996 Apr; 92(5):566-71. PubMed ID: 24166324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus.
    Li M; Wang R; Wu X; Wang J
    BMC Genomics; 2020 Apr; 21(1):330. PubMed ID: 32349676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.
    Jiang J; Wang Y; Zhu B; Fang T; Fang Y; Wang Y
    BMC Plant Biol; 2015 Jan; 15():22. PubMed ID: 25623840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations.
    Tian E; Jiang Y; Chen L; Zou J; Liu F; Meng J
    Theor Appl Genet; 2010 Nov; 121(8):1431-40. PubMed ID: 20607208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The diversity of retroelements in diploid and allotetraploid Brassica species.
    Alix K; Heslop-Harrison JS
    Plant Mol Biol; 2004 Apr; 54(6):895-909. PubMed ID: 15612105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct subgenome stabilities in synthesized Brassica allohexaploids.
    Zhou J; Tan C; Cui C; Ge X; Li Z
    Theor Appl Genet; 2016 Jul; 129(7):1257-1271. PubMed ID: 26971112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis.
    Ge XH; Li ZY
    Chromosome Res; 2007; 15(7):849-61. PubMed ID: 17899408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives.
    Rana D; van den Boogaart T; O'Neill CM; Hynes L; Bent E; Macpherson L; Park JY; Lim YP; Bancroft I
    Plant J; 2004 Dec; 40(5):725-33. PubMed ID: 15546355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae.
    Hawkins GP; Nykiforuk CL; Johnson-Flanagan AM; Boothe JG
    Genome; 1996 Aug; 39(4):704-10. PubMed ID: 18469930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The poor lonesome A subgenome of Brassica napus var. Darmor (AACC) may not survive without its mate.
    Pelé A; Trotoux G; Eber F; Lodé M; Gilet M; Deniot G; Falentin C; Nègre S; Morice J; Rousseau-Gueutin M; Chèvre AM
    New Phytol; 2017 Mar; 213(4):1886-1897. PubMed ID: 27575298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subgenome evolution in allotetraploid plants.
    Schiavinato M; Bodrug-Schepers A; Dohm JC; Himmelbauer H
    Plant J; 2021 May; 106(3):672-688. PubMed ID: 33547826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.